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Abstract 48 

[50–100 words] 49 

The human-supervised-automatic analytical approach to forensic voice comparison in 50 

conjunction with the likelihood-ratio interpretive framework is described. Practitioner 51 

tasks are described, including adoption of relevant hypotheses for the case, assessment 52 

of the conditions of the questioned-speaker and known-speaker recordings in the case, 53 

and selection of data representing the relevant population and reflecting the conditions 54 

for the case. Software tools are also described. An example is provided of a forensic-55 

voice-comparison system based on state-of-the-art automatic-speaker-recognition 56 

technology. Also described are the calibration and validation of that system using a 57 

benchmark dataset reflecting the conditions of a real forensic case. 58 

 59 
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o common-source likelihood-ratio model 65 
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technology 69 

o diarization and voice activity detection 70 
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1 Introduction 83 

The reader is assumed to already have some familiarity with the following topics, to 84 

the level which may be found in general introductions to forensic voice comparison: 85 

analytical approaches to forensic voice comparison, including the human-supervised-86 

automatic approach; interpretive frameworks applied to forensic voice comparison, 87 

including the likelihood-ratio framework; and validation of forensic-evaluation 88 

systems, including validation of systems that output likelihood ratios.  89 

The human-supervised-automatic analytical approach combined with the likelihood-90 

ratio interpretive framework is described in greater detail than is usual in general 91 

introductions to forensic voice comparison. Recent reviews of automatic-speaker-92 

recognition technology include Lee et al. (2020), Matějka et al. (2020), and Villalba et 93 

al. (2020). Morrison et al. (2020) provides an overview of the application of automatic-94 

speaker-recognition technology to forensic voice comparison. Application of more 95 

recent automatic-speaker-recognition technology is described in Weber et al. (2022a, 96 

2022b). 97 

For concreteness, in the current entry an example human-supervised-automatic 98 

forensic-voice-comparison system is described. The example is based on an alpha 99 

version of the core software tools of the E3 Forensic Speech Science System (E3FS3). 100 

E3FS3 is being developed by the Forensic Data Science Laboratory at Aston University, 101 

with contributions from AUDIAS – Audio, Data Intelligence and Speech at 102 

Universidad Autónoma de Madrid, and with additional contributions from multiple 103 

other research laboratories and operational forensic laboratories. E3FS3 is being 104 

developed for both research and casework use, and includes open-code software tools. 105 

The E3FS3 software tools are designed to be flexible and provide the user with various 106 

options. For simplicity, the example focuses on a single set of options. Although details 107 

may vary, the example system is broadly similar to other state-of-the-art systems. Also 108 

for concreteness, the discussion of protocols is based on those used by Forensic 109 

Evaluation Ltd. Protocols used by other forensic-service providers may vary. 110 
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Descriptions are provided of: 111 

• hypotheses and data, including: 112 

o the adoption of the relevant hypotheses for a case,  113 

o the assessment of the conditions of the questioned-speaker and known-114 

speaker recordings in the case, and  115 

o the selection of data representing the relevant population and reflecting 116 

the conditions for the case 117 

• the core software tools of the example system 118 

• a benchmark validation of the example system 119 

 120 

2 Hypotheses and data 121 

2.1 Hypotheses 122 

State-of-the-art human-supervised-automatic forensic-voice-comparison systems 123 

calculate common-source likelihood ratios for which the same-speaker versus 124 

different-speaker hypotheses are: 125 

𝑯𝟏: the speakers on the questioned-speaker and the known-speaker recordings are 126 

the same speaker 127 

versus  128 

𝑯𝟐: the speakers on the questioned-speaker and the known-speaker recordings are 129 

not the same speaker but two different speakers each selected at random from the 130 

relevant population 131 

2.2 Relevant population 132 
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The relevant population is the population from which the questioned speaker could 133 

potentially have come if they were not the known speaker. The relevant population can 134 

usually be restricted to either male or female speakers who speak a particular language 135 

with a particular accent (Morrison et al., 2016). By listening, it is usually clear to non-136 

experts such as judges and jury members whether the speaker on the questioned-137 

speaker recording is male or female, what language they are speaking, and broadly 138 

what accent of that language they are speaking. This, however, is not always the case, 139 

for example, it may be unclear whether the speaker on the questioned-speaker 140 

recording is male or female. If any of these things are disputed, then they may become 141 

issues requiring forensic evaluation. Usually, a forensic practitioner, in consultation 142 

with the instructing party, can define a relevant population to adopt for the case. In 143 

their casework report, the forensic practitioner should clearly state what population 144 

they have adopted, and they may request that the instructing party specify the relevant 145 

population in their letter of instruction. The choice of relevant population is a subjective 146 

judgment, and it can potentially be disputed. If the judge at an admissibility hearing or 147 

the judge or jury during trial is not convinced that the population adopted is a 148 

reasonable relevant population for the case, then the likelihood ratio that the forensic 149 

practitioner calculates will not be meaningful for the case – it will be answering a 150 

question about a different population than the one that the judge or jury considers 151 

relevant for the case. 152 

2.3 Common-source likelihood-ratio model 153 

In general, a common-source likelihood-ratio model has the form given in Equation (1) 154 

in which Λ is the likelihood ratio, 𝑓(𝑥q, 𝑥k|𝑀) is a joint probability-density function, 155 

𝑥q and 𝑥k are feature vectors characterizing the speech of the speaker of interest on the 156 

questioned-speaker and known-speaker recordings respectively (in our example system 157 

these are x-vectors), and 𝑀s and 𝑀d are the same-speaker and different-speaker models 158 

respectively. 159 
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(1)  160 

Λ =
𝑓(𝑥q, 𝑥k|𝑀s)

𝑓(𝑥q|𝑀d)𝑓(𝑥k|𝑀d)
 161 

In order to train (or adapt) the statistical models that calculate the likelihood ratio, the 162 

practitioner must use data from recordings of speakers sampled from the population 163 

that has been adopted as the relevant population for the case. If the data are not 164 

sufficiently representative of the relevant population for the case, then the likelihood 165 

ratio calculated will answer a different question than the one defined by the stated 166 

hypotheses. In their report, the practitioner should describe the data that they use for 167 

training. Whether the data are sufficiently representative of the relevant population is 168 

a subjective judgment, and it can potentially be disputed. Likewise, data used for 169 

validating the system must be sufficiently representative of the relevant population for 170 

the case. Usually, a single dataset intended to be representative of the relevant 171 

population will be obtained or selected, and that dataset will then be divided into a 172 

training set and a validation set. If these data are not actually representative of the 173 

relevant population, no amount of empirical testing will reveal this (Morrison, 2021).  174 

2.4 Recording conditions 175 

In addition to the data used for training and validation being sufficiently representative 176 

of the relevant population for the case, they must also be sufficiently reflective of the 177 

conditions of the questioned-speaker and known-speaker recordings in the case. 178 

Hansen & Bořil (2018) provide a taxonomy of sources of speaker-intrinsic and speaker-179 

extrinsic variability. Common speaker-intrinsic conditions or speaking styles include 180 

normal vocal effort and raised vocal effort. Slight to moderate raised vocal effort often 181 

occurs when a speaker is in a noisy environment or is communicating over a poor-182 

quality telecommunications channel. Shouting and whispering are obvious extreme 183 

examples of speaking styles. More extreme speaking styles, such as whispering, have 184 

more negative effects on the performance of automatic-speaker-recognition technology 185 
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than do less extreme speaking styles, such as slight to moderate raised vocal effort 186 

(Kelly & Hansen, 2021). Speaking one language on one recording and another 187 

language on another recording would also be a change in speaking style. A speaker’s 188 

speech varies from occasion to occasion, and variation tends to be greater across longer 189 

time intervals between recordings. Very long time intervals between when the 190 

questioned-speaker and known-speaker recordings were made should be accounted for 191 

in the statistical modeling process (Morrison & Kelly, 2019). Common speaker-192 

extrinsic conditions include different types and volumes of background noise, different 193 

amounts of reverberation, different distances from the speaker to the microphone, 194 

transmission of the speech signal through telecommunications systems that include 195 

bandpass filters and lossy compression, and recordings being saved using lossy 196 

compression. The length of the speech of the speaker of interest on a recording is also 197 

a condition. If high-quality recordings of speakers in suitable speaker-intrinsic 198 

conditions are available, speaker-extrinsic conditions can potentially be simulated by 199 

adding noise, convolving the audio signal with filters, and compressing and 200 

decompressing the signal. Data from longer recordings can easily be truncated to reflect 201 

shorter recordings.  202 

Assessing speaker-intrinsic conditions will usually require listening to the questioned-203 

speaker and known-speaker recordings (see comments on listening in the Diarization 204 

and VAD subsection below). Some speaker-extrinsic conditions such as signal-to-noise 205 

ratio can be quantitatively analyzed. More sophisticated channel-characterization tools 206 

may provide additional information such as information relating to what codecs may 207 

have been applied to a recording. Through the instructing party, the practitioner should 208 

also make enquiries as to the technical properties of systems used to make the casework 209 

recordings, e.g., a recording may be received as “pulse code modulation” (PCM, the 210 

standard uncompressed encoding for audio recordings), but it may have originally been 211 

saved in a lossy format and then exported to PCM. The instructing party will not 212 

usually have such technical information to hand, and the enquiry will usually have to 213 

be passed on to the person or team responsible for installing and maintaining the 214 
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recording equipment at the organization that supplied the recording.  215 

2.5 Training and validation data 216 

There are often mismatches between the conditions of the questioned-speaker 217 

recording and the conditions of the known-speaker recording. For each speaker in the 218 

training and validation datasets, there should be at least one recording that reflects the 219 

conditions of the questioned-speaker recording and at least one recording that reflects 220 

the conditions of the known-speaker recording. In their report, the practitioner should 221 

describe the conditions of the questioned-speaker and known-speaker recordings for 222 

the case, and how they obtained, selected, or simulated recordings that reflect the 223 

conditions for the case. The choice of training and validation data is a subjective 224 

judgment, and whether the data are sufficiently reflective of the conditions of the case 225 

can potentially be disputed. 226 

The relevant population and the conditions of the questioned-speaker and known-227 

speaker recordings can be highly variable from case to case. State-of-the-art automatic-228 

speaker-recognition technology can produce good results over a range of different 229 

conditions, but the major impediment to conducting forensic casework is availability 230 

of training and validation data representing the populations and reflecting the 231 

conditions of specific cases. Sometimes, new recordings can be made representing the 232 

population and reflecting the conditions for a specific case, but this is usually not 233 

practical – it depends on how easy it is to collect data for the specific population and 234 

specific set of conditions, the time available, and the budget available. Substantial 235 

investment is needed to build databases covering populations and conditions that are 236 

anticipated to occur in a substantial proportion of future cases. If the number of such 237 

databases increases and they cover a wider range of populations and conditions, then it 238 

will become practical to perform evaluations in a larger proportion of the cases for 239 

which forensic voice comparison is requested.  240 

Research is needed to assess the effects of varying speaker-intrinsic and speaker-241 
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extrinsic conditions, and of varying population. If changes in some conditions result in 242 

substantial changes in likelihood-ratio output, then this will inform practitioners that in 243 

future casework they should use data that closely reflect those conditions and not 244 

substitute data in one condition for data in another. If changes in some conditions result 245 

in negligible changes in likelihood-ratio output, then this will inform practitioners that 246 

in future casework they can substitute data in one condition for data in another, thus 247 

making it easier to obtain data that are sufficiently reflective of the conditions for a 248 

case. The results of such research will also inform future data-collection efforts. 249 

The poorer the quality and the shorter the duration of casework recordings, and the 250 

greater the mismatch in recording conditions between questioned-speaker and known-251 

speaker recordings, the poorer the performance of the forensic-voice-comparison 252 

system is expected to be. In principle, however, there is no minimum threshold below 253 

which forensic voice comparison cannot be performed. As long as suitable training and 254 

validation data can be obtained, the system can be trained and validated under 255 

conditions reflecting those of the case. A decision can subsequently be made about 256 

whether the performance of the system under those conditions is good enough to 257 

proceed to use it to compare the questioned-speaker and known-speaker recordings for 258 

the case. In practice, before training and validating the system, based on existing 259 

research and validation literature, the practitioner may be able to advise the instructing 260 

party in broad terms about the expected level of performance. If the level of 261 

performance is expected to be poor, a decision may be made to not proceed with 262 

training and validation (and not to proceed with data collection if it would be needed 263 

for training and validation).  264 

 265 

3 Software tools 266 

3.1 System architecture 267 

The high-level architecture of the example system’s core software tools is presented in 268 
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Figure 1. It consists of the following stages:  269 

1. speaker diarization and voice-activity detection (VAD) 270 

2. feature extraction 271 

3. x-vector extraction 272 

4. dimension reduction and mismatch compensation using linear discriminant 273 

analysis (LDA) 274 

5. calculation of uncalibrated likelihood ratios (scores) using probabilistic linear 275 

discriminant analysis (PLDA)  276 

6. calibration  277 

 278 

<Figure 1 about here>  279 

Figure 1. High-level architecture for the example human-supervised-automatic 280 

forensic-voice-comparison system’s core software tools. 281 

 282 

Data from the questioned-speaker recording and data from the known-speaker 283 

recording are processed in parallel through Stages 1–4. Stages 5 and 6 operate on data 284 

from pairs of recordings. Recordings used for training and validating the system (not 285 

shown in  Figure 1) are processed in the same manner as the data from the questioned-286 

speaker and known-speaker recordings. Terminologically: Stage 1 (diarization and 287 

VAD) are key parts of preprocessing; Stage 3 (x-vector extraction) constitutes the 288 

frontend model; and Stages 4–6 (LDA, PLDA, and calibration) constitute the backend 289 

models. 290 

We describe each stage of the system in its own subsection below. 291 
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3.2 Diarization and VAD 292 

Audio recordings received for forensic evaluation often include the speech of more 293 

than one speaker on the same recording channel. Speaker diarization is the process of 294 

dividing a recording into sections spoken by different speakers. Usually, only one 295 

speaker on a recording is of interest. In this situation, the speaker-diarization task is to 296 

find the sections of the recording that correspond to speech of the speaker of interest. 297 

Usually, the different speakers on a recording sound sufficiently different from each 298 

other that this is a trivial task for a forensic practitioner to perform manually. If this is 299 

not the case, then the identity of the speaker at various points in the recording may be 300 

a question requiring forensic evaluation. For manual diarization, the practitioner uses 301 

a software tool that visually presents the waveform, allows the practitioner to select 302 

and listen to sections of the recording, and allows them to add markers and labels 303 

indicating the sections that contain speech of the speaker of interest. The practitioner 304 

should listen in a quiet environment using reference headphones. Marking and labeling 305 

can be performed using any one of multiple commercial or freeware software tools 306 

designed for general use, e.g., Audition, Sound Forge, Audacity, or Praat. The example 307 

system includes SoundLabeller, a marking and labeling tool that is designed 308 

specifically for this task.  309 

A protocol can be adopted whereby one practitioner performs the diarization task, a 310 

second practitioner checks the results, and a pre-specified process to resolve any 311 

disagreements is then used. A protocol to reduce the potential for cognitive bias is to 312 

have one practitioner diarize the questioned-speaker recording and another practitioner 313 

diarize the known-speaker recording. That way, no individual practitioner auditorily 314 

compares the questioned-speaker and known-speaker recordings, so no practitioner can 315 

form a subjective judgment as to whether the two recordings are recordings of the same 316 

speaker or not. Strictly following both protocols would require a total of four 317 

practitioners. If this is impractical, a compromise would be to have a long time interval 318 

(e.g., at least several weeks) between when any individual practitioner (e.g., the 319 
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checker) listens to the questioned-speaker recordings and the known-speaker 320 

recordings.  321 

Practitioners may manually diarize the questioned-speaker and known-speaker 322 

recordings for a case, but this may be impractical if there are a large number of 323 

recordings or if the recordings are very long. Manual diarization is unlikely to be 324 

practical for the large numbers of recordings used for training and validating the 325 

forensic-voice-comparison system. Automatic diarization is itself a form of automatic 326 

speaker recognition. The example system uses the automatic-diarization method that 327 

performed the best in the DIHARD’19 diarization challenge, the VBx algorithm (Diez 328 

et al., 2019, 2020a; Landini et al., 2020, 2022). (All the data for the benchmark 329 

validation described below were supplied already diarized.) 330 

VAD is the detection and selection of sections of the recording that contain speech, as 331 

opposed to silence, background noise only, or transient noises. VAD is a prerequisite 332 

for diarization, but it is also required to find the sections of a recording containing 333 

speech when there is only one speaker on a recording channel. Although VAD could 334 

be performed manually, automatic VAD is preferred in order to obtain consistent 335 

results. If a practitioner performs manual diarization, they should mark the start of a 336 

section of speech a little early and the end a little late. Automatic VAD will then further 337 

truncate the manually marked section.  338 

Simple automatic VAD methods are based only on the intensity of the signal in the 339 

recording, but these methods do not perform well when there is background noise on 340 

the recording, as is common in casework recordings. More sophisticated automatic 341 

VAD methods attempt to distinguish speech sounds from non-speech sounds. 342 

Supervised methods require labeled training data, and tend to not perform well if they 343 

are applied to recordings whose conditions differ from those of the training data. 344 

Unsupervised methods do not require labeled training data, and are more robust to 345 

changes in conditions. Unsupervised methods can achieve similar levels of 346 

performance to supervised methods when the latter are trained and tested on the same 347 
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conditions (Kinnunen et al., 2016; Nautsch et al., 2016; Tan et al., 2020).  348 

The example system uses the rVAD-fast algorithm (Tan et al., 2020). This algorithm 349 

applies two noise-removal processes: The first process attempts to remove transient 350 

noises, and the second process attempts to remove background noise (this is 351 

background-noise removal for the purpose of performing VAD, features used for 352 

forensic voice comparison are extracted from the unmodified audio signal). The next 353 

stage in the algorithm searches for voiced speech sounds using a spectral flatness 354 

detector (which is faster than fundamental-frequency detection, which was used in the 355 

original rVAD algorithm). In order to also include voiceless sounds, the sections of the 356 

recording identified as containing voiced sounds are extended both before and after by 357 

60 frames (600 ms). The final stage uses heuristics based on the energy differences 358 

between frames to select frames deemed to be speech. 359 

3.3 Feature extraction 360 

Until recently, “mel-frequency cepstral coefficients” (MFCCs; Davis & Mermelstein, 361 

1980) were the most commonly used features for automatic-speaker-recognition 362 

systems, but “log-mel-filterbank features” have been found to be more effective for x-363 

vector systems (Alam et al., 2020; Landini et al., 2020; Lee et al., 2020). The example 364 

system uses the implementation of log mel filterbanks described in Young et al. (2015, 365 

§3.1.5). 366 

The steps for extracting log-mel-filterbank features are described below, see also 367 

Figure 2 in which the numbers correspond to the numbered steps below.  368 

1. The speech signal is multiplied by a bell-shaped window. In our example system, 369 

this is a Hamming window with a duration of 25 ms, i.e., 200 samples if the 370 

sampling frequency of the recording is 8 kHz.  371 

2. The power spectrum of the windowed signal is calculated using a discrete Fourier 372 

transform (DFT). The power spectrum consists of the squares of the magnitudes 373 
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of the components of the Fourier series (phase information is discarded). For 374 

computational efficiency, the example system uses a 512 point fast Fourier 375 

transform. 376 

3. The power spectrum is multiplied by each filter in a filterbank. These are a series 377 

of triangular shaped filters that are equally spaced in the mel-frequency scale. The 378 

example system uses 40 filters that together cover the frequency range 0–4 kHz. 379 

Each filter has a 50% overlap with each of its neighbors.  380 

4. For each filter in the filterbank, the logarithm is taken of the result of multiplying 381 

the power spectrum by that filter. This creates a set of 40 values that are output as 382 

a vector of log-mel-filterbank features. 383 

The window is advanced through the recording. In the example system, it is advanced 384 

by 10 ms (80 samples). Each time-interval covered by a window is called a frame, and 385 

in the example system there is a 60% overlap between adjacent frames. Steps 1 through 386 

4 are then repeated to produce another vector of log-mel-filterbank features. The 387 

window is repeatedly advanced until feature vectors have been extracted from all 388 

sections of the recording corresponding to the speech of the speaker of interest. A series 389 

of feature vectors arranged in chronological order will be referred to as a feature matrix. 390 

<Figure 2 about here> 391 

Figure 2. Procedure for the calculation of log-mel-filterbank feature vectors. The 392 

numbers correspond to the numbered steps in the main text. DFT = discrete Fourier 393 

transform. (This figure is adapted from Morrison et al., 2020.) 394 

 395 

3.4 x-vector extraction 396 

3.4.1 Overview 397 

With one feature vector extracted every 10 ms, i.e., 100 feature vectors extracted per 398 
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second, and recordings potentially including from several seconds to several minutes 399 

of speech of the speaker of interest, the number of feature vectors extracted per 400 

recording can range from several hundred to tens of thousands. x-vector extraction 401 

converts the feature vectors from a recording into a single x-vector. An x-vector has 402 

the same length irrespective of the duration of the speech of the speaker of interest on 403 

the recording. In addition, x-vector extraction is designed so that, in the 404 

multidimensional space of the x-vectors, x-vectors extracted from different recordings 405 

of the same speaker will be close to each other whereas x-vectors extracted from 406 

recordings of different speakers will be far from each other, i.e., x-vectors have small 407 

within-speaker variability and large between-speaker variability. When x-vectors are 408 

input to subsequent models that calculate likelihood ratios, those models can therefore 409 

produce likelihood-ratio values ranging from much smaller than 1 to much larger than 410 

1 (log-likelihood-ratio values ranging from much less than 0 to much more than 0).  411 

x-vectors are extracted using a deep neural network (DNN), which is an artificial neural 412 

network that has multiple layers between the input and output layers. The DNN is 413 

trained using a large number of recordings from each of a large number of speakers. 414 

The speaker-intrinsic and speaker-extrinsic conditions of the recordings should be 415 

diverse, and the speakers should also be diverse. That way, the DNN has the 416 

opportunity to learn about both within-speaker variability and between-speaker 417 

variability. The DNN has one output node for each speaker in the training set. If the 418 

DNN were being used to make a decision as to which of the speakers from the training 419 

set was speaking on a recording, the output node with the highest activation would 420 

correspond to the speaker with the highest posterior probability. In forensic voice 421 

comparison, however, the purpose is not to classify the incoming recording as 422 

belonging to one of the speakers on which the system was already trained, the purpose 423 

is to calculate a likelihood ratio for the comparison of recordings of the questioned 424 

speaker and the known speaker, neither of whom was used to train the system. 425 

Therefore, rather than using the output layer of the DNN, the activations of the nodes 426 

in a pre-final layer of the DNN are instead used as the values of an x-vector. Because 427 
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the x-vector layer of the DNN is prior to the output layer, rather then capturing 428 

information about the training speakers in particular, it is more abstract and captures 429 

information about properties that can distinguish speakers from one another in general.  430 

Key for successful training of a DNN x-vector extractor is to use large amounts of 431 

training data. The data should consist of tens of recordings in diverse speaker-intrinsic 432 

and speaker-extrinsic conditions from each of thousands of diverse speakers. The data 433 

used to train the DNN are not intended to represent the particular population or reflect 434 

the particular conditions of the case under consideration. Once it has been trained, 435 

however, a DNN can be used to extract x-vectors from recordings that do represent and 436 

reflect the populations and conditions specific to a case. 437 

3.4.2 Time-delay DNNs 438 

Compared to the current state of the art, the architecture of DNNs initially used for x-439 

vector extraction was relatively simple. Figure 3 provides a simplified schematic of the 440 

architecture of a DNN based on the description in Snyder et al. (2017). The squares in 441 

the bottom row of the figure represent feature vectors. For the “frame level” of the 442 

DNN, only the time dimension of the feature vectors is shown. Each layer of the frame 443 

level includes a parallel set of nodes and connections for each step in the frequency 444 

dimension of the feature vectors. The second row from the bottom of the figure 445 

represents the input layer of the DNN. The circles represent nodes. Each node is 446 

connected to multiple feature vectors from adjacent time steps. The “activation” of a 447 

node (the value that is passed to the next layer of the DNN), is a function of the 448 

weighted sum of the input values to that node (the function used is often non linear, 449 

and different functions may be used for different layers in the DNN). The weights can 450 

be thought of as properties of the connections feeding into the node of interest from 451 

nodes in the previous layer (or, for the input layer, from the feature matrix) – a higher 452 

weight is associated with a stronger connection (the analogy is with the synapses 453 

between biological neurons). Progressing up through the frame level of the DNN, each 454 

layer combines information from nodes corresponding to multiple time steps in the 455 
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preceding layer until the time dimension is collapsed to a single node in the time 456 

dimension (not shown in Figure 3, there is still a node for each step in the frequency 457 

dimension).  458 

<Figure 3 about here> 459 

Figure 3. Simplified schematic of the architecture of a time-delay DNN used for x-460 

vector extraction. (This figure is adapted from Morrison et al., 2020.) 461 

 462 

The frame level of the DNN combines information from a total of 15 time steps, 150 463 

ms if feature vectors are extracted every 10 ms. Recordings of speakers of interest are 464 

longer than 150 ms. Advancing one time step at a time, all the feature vectors from the 465 

speaker of interest on a recording are sequentially presented as input to the DNN, and 466 

the “statistics-pooling layer” calculates the mean and standard-deviation values of the 467 

activations of the nodes in the immediately preceding layer. There is one mean node 468 

and one standard-deviation node for each frequency-step node in the immediately 469 

preceding layer. The circles in the “segmental level” of the figure represent additional 470 

layers of nodes that process information output by the statistics-pooling layer. This is 471 

a fully-connected feed-forward network (within the network, every node in a layer is 472 

connected to every node in the immediately preceding layer and every node in the 473 

immediately following layer). Prior to the output layer, there is a bottleneck layer (it 474 

has fewer nodes than the preceding layer or the following layer), and the activations of 475 

the nodes in this layer are used as the values of an x-vector. 476 

To train the DNN, the weights are randomly initialized, a recording is presented, and 477 

the weights are adjusted to increase the relative level of activation of the output node 478 

corresponding to the speaker on the recording. This is repeated multiple times with tens 479 

of recordings from each of thousands of speakers.  480 

To extract an x-vector, a recording is presented to the DNN, and the resulting 481 
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activations of the nodes of the “x-vector layer” are used as the values of the x-vector. 482 

The output layer of the DNN is not used. 483 

3.4.3 Residual networks (ResNets) 484 

Current state-of-the-art x-vector extraction uses more complex DNNs called Residual 485 

Networks (ResNets; He et al., 2016). The example system uses a variant of the 486 

ResNet34 architecture described in Chung et al. (2020a, 2020b). The details of sizes of 487 

layers etc. in the following paragraphs are those of the example system.  488 

Each input-layer node of the ResNet receives input from a square “patch” of feature 489 

values which covers 7 time steps by 7 frequency steps in the feature matrix, see Figure 490 

4. There is one input-layer column for each time step in the feature matrix and one 491 

input-layer row for every other frequency step in the feature matrix – the “stride” is 1 492 

in the time dimension and 2 in the feature dimension. The length of the input-layer 493 

rows, 𝑇, is 400. The length of the input-layer columns, 𝐹, is 20 (the length of each 494 

feature vector is 40). A node in the input layer nominally corresponds to the feature-495 

matrix time and frequency step that is in the center of the 7×7 patch. If the center of a 496 

patch is near the edge of the feature matrix (in time or frequency steps), the part of the 497 

patch that extends beyond the edge of the feature matrix feeds in values of 0 (the feature 498 

matrix is padded with zeros). The set of connection weights between each node in the 499 

input layer and its corresponding patch of feature values is called a “kernel”. The same 500 

kernel is used for all input-layer nodes (the kernel is convolved with the matrix of 501 

feature values). Additional kernels are created by initializing the connections with 502 

different sets of weights. Each additional kernel is used for all nodes in an additional 503 

input layer that is parallel to the first input layer. Each parallel input layer creates a 504 

“channel” which is parallel to the other channels. The number of input channels, 𝐶, is 505 

16.  506 

<Figure 4 about here> 507 

Figure 4. Simplified schematic of the feature vectors and the input layer of a ResNet 508 
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DNN used for x-vector extraction. Only one channel is shown. (This figure is 509 

reproduced from Weber et al., 2022a, and Weber et al., 2022b.) 510 

 511 

Figure 5 provides a simplified schematic of the architecture of the ResNet used for x-512 

vector extraction by the example system. The ResNet consists of a series of “groups”, 513 

each group consists of a series of “blocks”, and each block consists of a series of layers. 514 

<Figure 5 about here> 515 

Figure 5. Simplified schematic of the architecture of a ResNet DNN used for x-vector 516 

extraction. (This figure is reproduced from Weber et al., 2022a, and Weber et al., 517 

2022b.) 518 

 519 

Figure 6 provides a simplified schematic of the architecture of a block. The first and 520 

second layer of each block are similar to the input layer of the ResNet in that each node 521 

receives input from a patch of nodes in the immediately preceding layer. These patches 522 

cover 3 time steps by 3 frequency steps by the full number of channels (3 × 3 × 𝐶). In 523 

Groups 2 and 3, the stride for the first layer of the first block is 2 for both the time and 524 

frequency dimensions (hence the size of both these dimensions is halved). For the 525 

second layer of the first block in each of Group 2 and 3, and for both the first and 526 

second layers of all other blocks in all groups, the stride is 1 in each dimension (hence 527 

the size of both these dimensions is unchanged). For the first layer of each of Groups 528 

2 through 4, two kernels are applied to the output of the previous group. This results in 529 

a doubling of the number of channels. The sizes of dimensions 𝑇 and 𝐹 and the number 530 

of channels 𝐶 within each group are provided in Table 1. 531 

<Figure 6 about here> 532 

Figure 6. Simplified schematic of the architecture of a block within a ResNet DNN 533 
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used for x-vector extraction. Only one channel is shown. The “input” is the last layer 534 

of the previous block. (This figure is reproduced from Weber et al., 2022a, and Weber 535 

et al., 2022b.) 536 

 537 

Table 1. Sizes of the dimensions of the components and subcomponents of the ResNet 538 

DNN used by the example system for x-vector extraction.  539 

<Table 1 about here> 540 

 541 

After its first two layers, each block has a one-dimensional “squeeze-excitation 542 

network”. Each node in the input layer of this network calculates the mean value of all 543 

the nodes in the previous layer belonging to a single channel, e.g., in the first block 544 

there are 16 channels therefore there are 16 nodes in the input layer of the squeeze-545 

excitation network. The network then has a bottleneck layer and an output layer. The 546 

output layer has the same number of nodes as the input layer, i.e., one per channel. The 547 

activations of the nodes in the output layer are used to weight the channels relative to 548 

one another. This focuses “attention” on the channels that are more useful for 549 

distinguishing speakers from one another (Cai et al., 2018).  550 

For each channel, the output of a block is the elementwise summation of the channel-551 

weighted output of the block’s second layer and of the original input to the block. If 552 

there is a difference in the number of time or frequency steps or the number of channels 553 

between the previous block and the current block, in order to be able to perform the 554 

elementwise summation, the input to the block is processed through a set of kernels 555 

that alter its dimensions to match those of the current block. This set of kernels is 556 

independent of other sets of kernels. The addition of the input to a block to what would 557 

otherwise be its output is the “residual” that give ResNets their name. 558 

Figure 7 provides a simplified schematic of the final stages of the ResNet, which 559 
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consist of a “statistics-pooling block”, an “x-vector layer”, and an “output layer”. For 560 

each channel, the first layer of the statistic-pooling block collapses the frequency 561 

dimension by calculating the mean of the column of frequency values corresponding 562 

to each time step of the immediately preceding layer. This results in a two-dimensional 563 

𝑇 × 𝐶 layer of nodes.  564 

After the first layer of the statistic-pooling block, similar to the squeeze-excitation 565 

networks in earlier blocks, there is a one-dimensional channel-attention layer which is 566 

the same length as the number of channels. Unlike the squeeze-excitation networks, 567 

the channel-attention layer is a single layer and is only connected to a higher layer, it 568 

does not have input from a lower layer. The activations of the nodes in the channel-569 

attention layer are therefore learned during training, and thereafter are fixed. The 570 

activations of the nodes in the channel-attention layer are used to weight the channels 571 

of the statistic-pooling block’s first layer. The result, the second layer, is a one-572 

dimensional layer that is the same length as the number of time steps, and in which the 573 

activation of each node is a function applied to the weighted sum of the activations of 574 

the first layer’s nodes at the corresponding time step. The activations of the nodes in 575 

the second layer are then used to weight the time steps of the statistic-pooling block’s 576 

first layer. The result, the third layer, is a one-dimensional layer that is the same length 577 

as the number of channels, and in which the activation of each node is the weighted 578 

sum of the activations of the first layer’s nodes for the corresponding channel. The third 579 

layer is the output layer of the statistics-pooling block. It has combined information 580 

from across both time and frequency. 581 

The output layer of the statistics-pooling block is fully connected to the x-vector layer. 582 

The x-vector layer of the example system has 512 nodes. The x-vector layer is fully 583 

connected to the ResNet’s output layer. The output layer has one node for each speaker 584 

in the training data.  585 

 586 
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<Figure 7 about here> 587 

Figure 7. Simplified schematic of the final stages of a ResNet DNN used for x-vector 588 

extraction. The final stages include the pooling block, the x-vector layer, and the output 589 

layer. Multiple channels are shown. The “input” are the last layers of the previous block 590 

from each of the multiple channels. “×” indicates matrix multiplication. (This figure is 591 

reproduced from Weber et al., 2022a, and Weber et al., 2022b.) 592 

 593 

For extraction of x-vectors, recordings longer (or shorter) than 400 feature vectors can 594 

be presented to the ResNet. Since the same kernels are used for each node in the input 595 

layer, the number of nodes in the rows of the input layer can be increased (or decreased) 596 

to accommodate the number of feature vectors, and the kernels simply repeated for 597 

each node – no retraining is needed to accommodate the different number of feature 598 

vectors. The number of time steps in higher layers can likewise be increased (or 599 

decreased) without the need for retraining. The statistics-pooling block collapses the 600 

time dimension (and the frequency dimension) so that the final one-dimensional layers 601 

of the ResNet have the same numbers of nodes irrespective of the number of feature 602 

vectors and the number of time steps in earlier layers. 603 

3.5 LDA 604 

From Stage 6 onward, the data used for training or adapting the backend models should 605 

be representative of the relevant population for the case and should reflect the 606 

conditions of the questioned-speaker and known-speaker recordings for the case, 607 

including any mismatch in conditions between the questioned-speaker and known-608 

speaker recordings. 609 

Linear discriminant functions (see Klecka, 1980) are used for mismatch-compensation 610 

and to reduce the number of dimensions of the x-vector. This process is referred to in 611 

the automatic-speaker-recognition literature as LDA. The example system uses the 612 
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algorithm described in Hastie et al. (2009, §4.3), and the x-vectors are reduced from 613 

512 to 120 dimensions.  614 

The number of recordings available for training that represent the relevant population 615 

for a case and that reflect the conditions of the questioned-speaker and known-speaker 616 

recordings for a case is usually relatively low. In addition to using x-vectors from 617 

recordings that actually reflect the population and conditions for the case (in-domain 618 

data), x-vectors from a large number of non-case-specific recordings from a large 619 

number of speakers (out-of-domain data) can be adapted to simulate this population 620 

and these conditions. The correlation alignment (CORAL) algorithm (Sun et al., 2017; 621 

Alam et al., 2018) linearly shifts and scales the out-of-domain data so that their total 622 

covariance matrix (within-speaker plus between-speaker covariance matrix) matches 623 

that estimated from the in-domain data. The example system uses the CORAL 624 

algorithm described in Alam et al. (2018). The original in-domain data plus the adapted 625 

data are then used to calculate the linear discriminant functions. An alternative method 626 

would be to use the CORAL+ algorithm to adapt the PLDA model (Lee et al., 2019). 627 

The in-domain and adapted x-vectors of the training data are transformed using the 628 

linear discriminant functions. The x-vectors that will be used for calibration and 629 

validation are transformed using the same linear discriminant functions. 630 

3.6 PLDA 631 

The post-LDA in-domain and adapted x-vectors are used to train a model that in the 632 

automatic-speaker-recognition literature is known as PLDA (Prince & Elder, 2007; 633 

Kenny, 2010; Brümmer & de Villiers, 2010; Sizov et al., 2014). The example system 634 

implements the two-covariance variant of PLDA described in Brümmer & de Villiers 635 

(2010). This is the same as the common-source likelihood-ratio model described in 636 

Ommen & Saunders (2021) and the multivariate normal procedure described in Aitken 637 

& Lucy (2014). For ease of explanation, a univariate version of the two-covariance 638 

PLDA is described below. The analogous multivariate version is then presented. 639 
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Prior to training the PLDA model, to better fit the assumptions of the model, the post-640 

LDA x-vectors in the training data are centered, “whitened” (i.e., rotated and scaled so 641 

that for the entire training set the variance in each dimension is 1 and the covariance 642 

between dimensions is 0, note that these are transformations based on the between-643 

plus-within-source covariance matrix, not either of the within-source or between-644 

source covariance matrices alone), then scaled to unit length in the Euclidian 645 

multidimensional space (García-Romero & Espy-Wilson, 2011). The x-vectors that 646 

will be used for calibration and validation are transformed using the centering and 647 

whitening functions derived from the training data, and then scaled to unit length. 648 

In general, a common-source likelihood-ratio model has the form given in Equation (1) 649 

above. The two-covariance PLDA model assumes Gaussian distributions for same-650 

speaker and different-speaker models 𝑀s and 𝑀d, and assumes that all speakers have 651 

the same within-speaker variance, see Equation (2), in which λ is an uncalibrated 652 

likelihood-ratio value, 𝑓(𝑥|𝜇, 𝜎2) is a Gaussian probability-density function 653 

(parametrized using mean and variance), 𝑥q and 𝑥k are the questioned-speaker and 654 

known-speaker (post-LDA post-centering-whitening-and-scaling) x-vectors 655 

respectively, 𝜇r is the relevant-population mean, 𝜇𝑖 and 𝜇𝑗 are means for arbitrary 656 

individual speakers, and 𝜎w2  and 𝜎b2 are the within-speaker variance and the between-657 

speaker variance respectively. 𝜎w2 , and 𝜎b2 are estimated using the training data. 𝜎w2  is 658 

estimated as the pooled-within-speaker variance. Since the training data are centered, 659 

𝜇r = 0. 660 

(2)  661 

λ =
∫𝑓(𝑥q|𝜇𝑖 , 𝜎w

2)𝑓(𝑥k|𝜇𝑖 , 𝜎w
2)𝑓(𝜇𝑖|𝜇r, 𝜎b

2) 𝑑𝜇𝑖

∫ 𝑓(𝑥q|𝜇𝑖 , 𝜎w
2)𝑓(𝜇𝑖|𝜇r, 𝜎b

2) 𝑑𝜇𝑖 ∫𝑓(𝑥k|𝜇𝑗 , 𝜎w
2)𝑓(𝜇𝑗|𝜇r, 𝜎b

2) 𝑑𝜇𝑗
 662 

 =

𝑓([
𝑥q
𝑥k
]|[
𝜇r
𝜇r
] , [

𝜎w
2 + 𝜎b

2 𝜎b
2

𝜎b
2 𝜎w

2 + 𝜎b
2])

𝑓(𝑥q|𝜇r, 𝜎w
2 + 𝜎b

2
)𝑓(𝑥k|𝜇r, 𝜎w

2 + 𝜎b
2
)
 663 
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 =

𝑓([
𝑥q
𝑥k
]|[
𝜇r
𝜇r
] , [

𝜎w
2 + 𝜎b

2 𝜎b
2

𝜎b
2 𝜎w

2 + 𝜎b
2])

𝑓([
𝑥q
𝑥k
]|[
𝜇r
𝜇r
] , [

𝜎w
2 + 𝜎b

2 0

0 𝜎w
2 + 𝜎b

2])

 664 

The numerator of Equation (2) integrates over all possible values for individual-665 

speaker means given the between-speaker distribution, with the constraint that 𝑥q and 666 

𝑥k come from the same speaker. The denominator of Equation (2) integrates over all 667 

possible values for individual-speaker means given the between-speaker distribution, 668 

but does so independently for 𝑥q and for 𝑥k. The solutions to the integrals can be 669 

expressed as bivariate Gaussian distributions in which for the same-speaker model (the 670 

numerator model) the covariances equal the between-speaker variance, 𝜎b2, but for the 671 

different-speaker model (the denominator model) the covariances are zero. This 672 

reflects the logic that the values of x-vectors from different recordings of the same 673 

speaker are expected to be correlated, but the values of x-vectors from recordings of 674 

different speakers are not expected to be correlated. This is graphically represented in 675 

Figure 8, in which the different-speaker model has round contours, but the same-676 

speaker model has elliptical contours with their major axes in the direction of the 677 

positively correlated diagonal.  678 

<Figure 8  about here> 679 

Figure 8. Graphical representation of the calculation of a likelihood ratio using a 680 

univariate two-covariance PLDA model. (This figure is adapted from Morrison et al., 681 

2020.) 682 

 683 

The multivariate version of the two-covariance PLDA model is provided in Equation 684 

(3), in which 𝑓(𝒙|𝝁, 𝚺) is a multivariate Gaussian probability-density function, and the 685 

scalar features, means, and variances of Equation (2) are replaced by their analogous 686 

feature vectors, mean vectors, and covariance matrices. 687 
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(3)  688 

λ =
𝑓 ([

𝒙q
𝒙k
] | [

𝝁r

𝝁r
] , [

𝚺w + 𝚺b 𝚺b
𝚺b 𝚺w + 𝚺b

])

𝑓(𝒙q|𝝁r, 𝚺w + 𝚺b)𝑓(𝒙k|𝝁r, 𝚺w + 𝚺b)
 689 

 690 

3.7 Calibration 691 

The output of the two-covariance PLDA model was described as an uncalibrated 692 

likelihood ratio. This is because the model requires estimation of a large number of 693 

parameter values using a limited amount of data. For the example system, it requires 694 

the estimation of two covariance matrices in a 120 dimension space, i.e., a total of 695 

14,520 parameter values. The output of the PLDA is therefore not expected to be well 696 

calibrated. In the automatic-speaker-recognition literature, the logarithms of the 697 

uncalibrated likelihood ratios are called scores, but note that they are not similarity 698 

scores (Morrison & Enzinger, 2018; Neumann & Ausdemore, 2020; Neumann et al., 699 

2020). 700 

A calibration model is trained using a dataset which will be called a calibration set. 701 

This is a dataset that was not used to train earlier stages of the system and that should 702 

be representative of the relevant population for the case and should reflect the 703 

conditions of the questioned-speaker and known-speaker recordings for the case. Each 704 

speaker in the calibration set should have at least one recording reflecting the 705 

conditions of the questioned-speaker recording and at least one recording reflecting the 706 

conditions of the known-speaker recording. From the calibration set, pairs of 707 

recordings are constructed such that one member of each pair reflects the questioned-708 

speaker conditions and the other member reflects the known-speaker conditions. A 709 

large number of pairs should be constructed in which the two recordings in each pair 710 

come from the same speaker, and a large number of pairs should be constructed in 711 

which the two recordings in each pair come from different speakers. These recordings 712 
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are processed through Stages 1–5 of our example system, resulting in a set of scores 713 

from same-speaker pairs and a set of scores from different-speaker pairs. These scores 714 

are univariate, and are used to train a parsimonious calibration model. For the 715 

parsimonious univariate model, the number of parameter values to be estimated is small 716 

compared to the amount of training data, hence the output of the model is well 717 

calibrated. A commonly used model is logistic regression (Pigeon et al., 2000; 718 

González-Rodríguez et al., 2007; Morrison, 2013, 2021). Logistic regression fits a 719 

linear model in the log-likelihood-ratio space, which only requires the estimation of 720 

two parameter values, an intercept 𝛽0 and a slope 𝛽1, see Equation (4). 721 

(4)  722 

log(Λ) = 𝛽0 + 𝛽1log(λ) 723 

The example system uses regularized logistic regression as described in Morrison & 724 

Poh (2018). (This model is fitted using a regularized version of the conjugate-gradient 725 

method.) Regularization reduces the slope, 𝛽1, with the result that the calibrated log 726 

likelihood ratio is closer to the neutral value of 0 than would otherwise be the case (the 727 

likelihood-ratio value is closer to 1). This reduces the probability of overstating the 728 

strength of evidence in either direction. For the validations conducted using the 729 

example system, the regularization weight was set to be equivalent to 1 pseudo-speaker 730 

(see Morrison & Poh, 2018, for details). 731 

An additional step that some systems use before calibration is score normalization. 732 

Adaptive Symmetric Norm (AS-Norm; Cumani et al., 2011) is currently the standard 733 

method for score normalization. Score normalization was not used for the validations 734 

conducted using the example system.  735 

4 Validation 736 

4.1 Data and training 737 

The performance of the example system was validated on a benchmark dataset 738 
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(forensic_eval_01) that reflects the conditions of a forensic case. The benchmark 739 

dataset and validation protocols are described in Morrison & Enzinger (2016a). The 740 

speakers are adult male Australian-English speakers. The questioned-speaker condition 741 

reflects a 46 s long landline-telephone call, with background babble noise, saved using 742 

lossy compression. The known-speaker condition reflects a 126 s long interview 743 

recorded in a reverberant room, with background ventilation-system noise. The 744 

durations just stated are for the amount of speech of the speaker of interest after semi-745 

automatic diarization but before applying VAD. The questioned-speaker-condition and 746 

known-speaker-condition recordings were recorded on different occasions separated 747 

by approximately a week or more. Each speaker in the test set was recorded on at least 748 

two occasions. The test set consists of a total of 223 recordings from 61 speakers, 61 749 

in questioned-speaker condition and 162 in known-speaker condition,  allowing for the 750 

construction of 111 same-speaker pairs of recordings and 6720 different-speaker pairs 751 

of recordings (from 3660 pairs of speakers). The dataset also includes a training set 752 

consisting of a total of 423 recordings from 105 speakers (191 recordings in 753 

questioned-speaker condition and 232 in known-speaker condition).  754 

The x-vector extractor was trained using approximately 1 million recordings total from 755 

approximately 6 thousand speakers from the VoxCeleb2 database (Chung et al., 2018; 756 

Nagrani et al., 2020). As out-of-domain data for CORAL, approximately 30 thousand 757 

recordings total were used from approximately 2.7 thousand speakers from the 758 

SRE2018 Test dataset (Greenberg et al., 2020). As in-domain data for LDA and PLDA 759 

training, the forensic_eval_01 training set was used.  760 

For training the calibration model and for validation, the forensic_eval_01 test set was 761 

used. To avoid training and testing on the same data (and in accordance with the 762 

recommendations in the “Consensus on validation of forensic voice comparison”; 763 

Morrison et al., 2021), leave-one-speaker-out / leave-two-speakers-out cross-validation 764 

was used: In a cross-validation loop in which the score to be calibrated was a same-765 

speaker score, e.g., a recording of speaker A compared to another recording of speaker 766 
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A, all scores that resulted from comparisons in which one or both members of the pair 767 

was a recording of speaker A were excluded from the data used to train the calibration 768 

model (leave-one-speaker-out). In a cross-validation loop in which the score to be 769 

calibrated was a different-speaker score, e.g., a recording of speaker A compared to a 770 

recording of speaker B, all scores that resulted from comparisons in which one or both 771 

members of the pair was a recording of speaker A or a recording of speaker B were 772 

excluded from the data used to train the calibration model (leave-two-speakers-out). 773 

Prior to use, if not already in this format, all recordings were converted to 8 kHz 774 

sampling rate 16 bit quantization PCM. 775 

4.2 Results 776 

A Tippett plot showing validation results is presented in Figure 9. The same-speaker 777 

and different-speaker curves have relatively shallow slopes, indicating good 778 

performance, and they cross near a log-likelihood-ratio value of 0, indicating good 779 

calibration. The Tippett plot indicates that the validation results would support 780 

likelihood-ratio values into the thousands in favor of the same-speaker hypothesis and 781 

into the tens of thousands in favor of the different-speaker hypothesis (log10 likelihood 782 

ratios beyond +3 and −4 respectively). 783 

 784 

<Figure 9 about here> 785 

Figure 9. Tippett plot of the results of validating the example system (E3FS3α) on the 786 

forensic_eval_01 dataset. (This figure is adapted from Weber et al., 2022b.) 787 

 788 

A virtual special issue of the journal Speech Communication, reports on the validation 789 

of several systems using the forensic_eval_01 dataset. A summary of results is 790 

presented in Morrison & Enzinger (2019). Table 2 presents an extract of the Cllr results 791 
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from the virtual special issue, plus the Cllr result for the example system. The Cllr value 792 

for the example system was 0.208. The lower the Cllr value, the better the performance 793 

of the system. A system that gave no information and always responded with a 794 

likelihood ratio of 1 irrespective of the input would have a Cllr value of 1. In terms of 795 

Cllr, the example system performed equally as well as the best-performing system from 796 

the virtual special issue, Phonexia SID-BETA4 (Jessen et al., 2019).  797 

 798 

Table 2. Cllr values from the best-performing version of each system validated in the 799 

Speech Communication virtual special issue (Morrison & Enzinger, 2019), plus the Cllr 800 

result for the example system (E3FS3α). 801 

<Table 2 about here> 802 

 803 

4.3 Discussion 804 

The validation results could be used to decide whether the example system should be 805 

used to calculate and submit to court  a likelihood ratio for comparison of a questioned-806 

speaker recording and a known-speaker recording in a case for which the 807 

forensic_eval_01 dataset represented the relevant population and reflected the 808 

conditions for that case. For cases involving other populations and conditions, 809 

validations with data representing those populations and reflecting those conditions 810 

would need to be conducted before deciding whether the system could be used and the 811 

results submitted to courts. 812 

Since the publication of the virtual special issue, improvements may have been made 813 

to the actively-developed systems included in Table 2 (Nuance, Phonexia, and 814 

VOCALISE), and it may be that the newer versions of these systems would obtain 815 

better results.  816 
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 817 

5 Conclusion 818 

The human-supervised-automatic analytical approach to forensic voice comparison in 819 

conjunction with the likelihood-ratio interpretive framework has been described. The 820 

description included practitioner tasks, including adoption of the relevant hypotheses 821 

for the case, the assessment of the conditions of the questioned-speaker and known-822 

speaker recordings in the case, and the selection of data representing the relevant 823 

population and reflecting the conditions for the case. It also included an example 824 

forensic-voice-comparison system based on state-of-the-art automatic-speaker-825 

recognition technology, and validation of that system using a benchmark dataset 826 

reflecting the conditions of a real forensic case. 827 

 828 

6 Relevant webpages 829 

E3 Forensic Speech Science System (E3FS3) 830 

https://e3fs3.forensic-voice-comparison.net/ 831 

Virtual special issue of the journal Speech Communication: “Multi-laboratory 832 

evaluation of forensic voice comparison systems under conditions reflecting those of a 833 

real forensic case (forensic_eval_01)”  834 

https://www.sciencedirect.com/journal/speech-communication/special-835 

issue/10KTJHC7HNM 836 
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Table 1. Dimensions of the components of the ResNet DNN used by the example 

system for x-vector extraction. 

 

Component Subcomponent 

Dimensions 

time 
T 

frequency 
F 

channels 
C 

Feature vectors – 400 40 1 

Input layer – 400 20 16 

Group 1 3 blocks 400 20 16 

Group 2 4 blocks 200 10 32 

Group 3 6 blocks 100 5 64 

Group 4 3 blocks 100 5 128 

Statistics-pooling 
block 

Layer 1 100 1 128 

Channel-
attention layer 1 1 128 

Layer 2 100 1 1 

Layer 3 1 1 128 

x-vector layer – 1 1 512 

Output layer – 1 1 Number of 
training speakers 
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Table 2. Cllr values from the best-performing version of each system validated in the 

Speech Communication virtual special issue (Morrison & Enzinger, 2019), plus the Cllr 

result for the example system (E3FS3α). 

System  Type Cllr 

Batvox 3.1  GMM-UBM 0.593  

MSR GMM-UBM GMM-UBM 0.576  

MSR GMM i-vector GMM i-vector 0.449  

Batvox 4.1  GMM i-vector 0.365 

Phonexia XL3 DNN bottleneck 0.294  

Nuance 9.2 GMM i-vector 0.285  

VOCALISE 2017B GMM i-vector 0.267  

Nuance 11.1 DNN senone 0.255  

VOCALISE 2019A x-vector 0.246  

E3FS3α x-vector 0.208 

Phonexia BETA4 x-vector 0.207 
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