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Abstract— Nasal stops have been recognized as an important 
source of speaker-discriminating features. The nasal cavity is, 
with the exception of the velar junction, independent of articula-
tory movements. As the complex nasal structure varies from per-
son to person, features dependent upon nasal acoustics may have 
low within-speaker and high between-speaker variability. In this 
study we use a Bayesian estimation technique to obtain reflection 
coefficients of a branched-tube model of the combined nasal and 
oral tract. These are then used as parameters in speaker verifica-
tion experiments. The performance is evaluated on the basis of 
speakers from the TIMIT corpus as well as the Kiel corpus and is 
compared with that of a system based on Mel frequency cepstral 
coefficient (MFCC) features. Fusion of both systems indicates 
that the two approaches offer complementary information.  

Keywords— Nasals, vocal tract modeling, Bayesian estimation, 
speaker verification 

I.  INTRODUCTION 
Nasals have been considered to potentially provide useful 

information for discriminating speakers [1] (p. 133). In the 
production of nasal stops the nasal cavity is coupled to the vo-
cal tract by lowering the velum while a closure is formed by 
the lips (/m/), the tongue at the alveolar ridge (/n/) or the 
tongue dorsum at the lowered velum (/ŋ/). The relatively fixed 
structure of the vocal and nasal cavity provides the basis for the 
a-priori assumption of low within-speaker variability.  

During closure, the pharynx and the nasal cavities form a 
pathway, which acts as a filter for the glottal pulse stream. It 
causes peaks in the spectrum corresponding to its resonances, 
while the closed oral cavity introduces peaks as well as depres-
sions that are caused by acoustical cancellations. Pairs of si-
nuses, the sphenoidal sinus, maxillary sinus, frontal sinus and 
the ethomoidal sinus, commonly called paranasal cavities, are 
located around the nasal cavity and are coupled to it, which 
causes additional resonances and cancellations [2,3]. Due to 
their complicated structure and the asymmetric proportions of 
the left and right sinuses and passages of the nasal tract, which 
is split in two by the nasal septum, there exists substantial 
variation in the acoustic properties between different speakers 
[4]. Combined with the low within-speaker variability, the 
acoustics of nasal stops are theoretically a valuable source of 
speaker-discriminating features. 

The use of nasal segments was demonstrated in early stud-
ies on speaker identification [5,6]. In automatic speaker 
recognition, work on the relative value of different sound clas-
ses and representations identified nasal stops as a particularly 
important source of speaker-discriminating features [7,8,9,10]. 
Most studies, however, did not explore explicit modeling of 
nasal acoustics beyond modeling spectra using pole-zero model 
estimates [11,12]. Features derived from theoretical models of 
the vocal tract acoustics can more readily be interpreted, which 
may be beneficial for applications such as forensic voice 
comparison. 

The drawback of such models is the higher complexity and 
thus a more difficult estimation. To accurately model the spec-
tral components of nasal speech signals, a minimum of two 
connected tubes is necessary. This added complexity as com-
pared to one-tube models requires additional assumptions in 
order to constrain the estimation process. Thus, the present 
paper uses a variational Bayesian scheme to estimate the tube 
areas of a branched nasal and oral tract model from the log-
spectrum of the speech signal of nasal stops [13]. Probabilistic 
priors are used to enforce smoothness of the tube model. 
Reflection coefficients are obtained from tube model estimates 
and are used as features. We use a Gaussian mixture model –
universal background model (GMM-UBM) system based on 
these features in speaker verification experiments on the 
TIMIT data base and the German-language Kiel corpus. The 
effect of using different prior variances in the estimation is 
evaluated. Performance is compared with a baseline GMM-
UBM system using Mel frequency cepstral coefficients 
(MFCCs), a standard feature in automatic speaker recognition 
systems, which are extracted from the same nasal stop seg-
ments. 

II. METHODOLOGY 

A. Data base 
We performed speaker verification experiments using two 

data bases in different languages: The TIMIT corpus [14] and 
55 German speakers taken from the Kiel Corpus [15]. These 
corpora were selected because they provide accurate phonetic 
labels, which otherwise would have to be acquired by using a 
nasal detector or a speech recognizer followed by forced align-
ment. For experiments on the Kiel corpus we selected 20 
speakers to train the universal background model. Data from 



the remaining 35 speakers were used to form verification trials 
for evaluating the performance of the features. We pooled 
alveolar nasal /n/ segments from all sentences spoken by a 
speaker and split them into two sets of approximately equal 
size for use in model training and as test data in verification 
trials. For TIMIT we selected each 20 female and 20 male 
speakers to train the universal background model. Further 20 
female and 20 male speakers were selected as development set 
to optimize the number of mixture components in the Gaussian 
mixture model and to train calibration weights (see Section II-
E). Data from the remaining 550 speakers were used to form 
verification trials for evaluating the performance of the fea-
tures. We pooled alveolar nasal /n/ segments from sa and si 
sentences for adapting speaker models and alveolar nasal /n/ 
segments from sx sentences as test data.  

B. Vocal tract model 
Nasal stops can be modeled by an acoustic tube consisting 

of three parts [16]: (1) a pharyngeal tract (L segments) between 
the glottis and the velum (nasal-oral branching point), (2) a 
nasal tract (M segments) open at the nostrils, and (3) a closed 
(non-radiating) oral tract (N segments). Each tract is modeled 
by a segmented tube. Using continuity conditions between the 
segments and at the coupling of the three branches a pole-zero 
representation or rational transfer function H (z) = B (z) / A (z) 
can be derived. These polynomials are related to the area func-
tion of the vocal tract via the reflection coefficients 
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where Am is the cross-sectional area of the m-th segment start-
ing at the nostrils (or lips for the oral part). The numerator 
polynomial B (z) is of degree N and dependent on the oral 
reflection coefficients µ0;Ο  to µΝ−1;Ο. The denominator polyno-
mial A (z) of degree L + M + N is dependent on the oral reflec-
tion coefficients, the pharyngeal reflection coefficients µΜ 
to  µΜ+Λ, the nasal reflection coefficients µ1 to µΜ−1, and the 
relation between the cross sectional areas of oral and nasal cou-
pling sections at the velum [16]: 

 )/(ν ,11,1 ONMON AAA −−− +=  (2) 

However, in general, no exact mapping from the M + L + 
2N polynomial coefficients to the M + L + N + 1 tube model 
parameters exists. Hence, deriving the area function of a 
branched-tube model from a pole-zero model is not straight-
forward and requires some degree of approximation [16,17].  

In [13] we introduced an approach that estimates all coeffi-
cients directly from the spectral envelope. A Bayesian algo-
rithm is used that includes probabilistic prior assumptions on 
the smoothness of the vocal tract tube. The estimation scheme 
is based on a general variational Bayesian scheme under Gaus-
sian assumptions [18] and has been shown to decrease the 
within-speaker variability [13]. 

C. Estimation scheme 
Based on the results of [19], the estimation scheme models 

the logarithm of the transfer function H (z) based on the log of 
the spectral envelope G (ω) of the recorded signal. The genera-
tive model for the log-envelope can be written as  

 )ε(+== ω)ωθ,()ω(ln fGy  (3) 

The function f (θ, ω) incorporates the non-linear transforma-
tion from the reflection coefficients to the log transfer function 
as well as a non-linear mapping from the i-th parameter θi 
(which is unrestricted) to the i-th reflection coefficient μi using 
a sigmoidal function (specifically the Gaussian error function) 
ensuring that the reflection coefficients are restricted to the 
open interval (–1, 1). The nasal-oral coupling parameter ν is 
restricted to the interval (0, 1). A scaling factor for the transfer 
function is also added. This parameter has to be positive, which 
is achieved by a log transformation. Therefore, the parameter 
vector θ is of dimension M + N + L + 2. The measurement 
error ε is assumed to be normally distributed with N (0, Σ (λ)), 
with λ parameterizing the error covariance such that Σ (λ) is a 
diagonal matrix with exp(−λ) as its entries. The normality 
assumption about the error yields a Gaussian likelihood func-
tion 
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where Σ (λ) is now written as Σ for simplicity and m denotes 
the model assumptions, e.g., prior settings and vocal tract struc-
ture. The priors for θ and λ are also Gaussian, i.e., 
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where m was dropped for simplicity. Πθ and Πλ are the respec-
tive precision matrices. 

D. Vocal tract priors 
Informative priors for the reflection coefficients would re-

quire probabilistic information about the vocal tract shape, 
which are not well known in general. Therefore, we just require 
smoothness of the vocal tract (a similar example is obtaining 
the area function using linear predictive coding when both glot-
tal and lip losses are estimated [20]). Solutions with smaller 
reflection coefficients and hence smoother vocal tracts are pre-
ferred by using Gaussian priors centered on zero. A higher 
prior precision (i.e., a smaller prior variance) implies stronger 
regularization. The prior for the nasal-oral coupling coefficient 
ν is also centered on zero resulting in equal nasal and oral cou-
pling areas due to the non-linear sigmoidal mapping.  

E. Speaker verification experiments 
The Gaussian mixture model – universal background model 

approach [21] was adopted in the experiments for modeling the 
extracted features. We favored this technique over current 
state-of-the-art speaker verification approaches such as i-vec-
tor, joint factor analysis, or support vector machine based 



systems, as these systems require additional training data 
which is often not easily available, e.g., in forensic applica-
tions. 

Feature vectors consisting of the transformed reflection 
coefficients θi of vocal tract model estimates were modeled by 
mixtures of Gaussian distributions (GMMs) with diagonal 
covariance matrices, denoted by  

 Kjjjjp ,...,1),τ,(:λ =Σ= , (6) 

where pj , τj , and Σj represent the mixture weights, means and 
covariance matrices. The universal background model (UBM), 
which models the distribution of the features in the reference 
population, was trained on the background data pooled across 
speakers. Its mixture weights, means and co-variances were 
estimated using the expectation-maximization (EM) algorithm. 
Individual GMMs that represent speakers were obtained by 
maximum a-posteriori (MAP) adaption of the UBM means. In 
a comparison trial a score was calculated as 
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where xk is a feature vector, N is the number of tokens of /n/ in 
the test data, and λspeaker and λUBM represent the models of the 
trial speaker and the background model, respectively.  

For each test we calculate scores using a GMM-UBM sys-
tem based on vocal tract reflection coefficients (VT RCs) as 
feature vectors and a baseline GMM-UBM system based on 
Mel frequency cepstral coefficients (MFCCs). Scores of each 
system were calibrated using logistic-regression calibration 
[22]–[24]. For experiments on the TIMIT corpus a small 
development set of speakers was used to obtain the calibration 
weights, for experiments on the Kiel corpus we obtained 
calibration weights for each comparison score using leave-one-
out cross validation (calculations were performed using [25], 
and [26]). We also examined whether combining the two 
different types of representation leads to improved perfor-
mance. For this we used logistic regression to fuse the scores 
from VT RC and MFCC based systems [27], which is a com-
monly used fusion technique. 

III. RESULTS 

A. TIMIT corpus 
We first investigated the effect of using different values for 

the prior precision in the Bayesian estimation scheme on 
speaker verification performance. Fig. 1 shows a Detection 
Error Trade-off (DET) plot [28] (obtained using the Receiver 
Operator Characteristic Convex Hull method [29]) of systems 
using vocal tract parameters obtained using different prior 
variances from alveolar nasal /n/ tokens from speakers in the 
TIMIT corpus. Steady increases in performance can be ob-
served for higher values of the prior precision. 

Fig. 2 shows a comparison of the performance of a system 
based on vocal tract reflection coefficients (VT RCs) and 

MFCCs extracted from alveolar nasal /n/ tokens from speakers 
in the TIMIT corpus. The system based on vocal tract reflec-
tion coefficients had an EER of 12% and the system based on 
MFCC an EER of 10.7%. Fusion of both systems achieved a 
sizable absolute reduction in EER to 7.5%, indicating that both 
systems offer complementary information. 

 

 
Fig. 1.  DET plot comparing the performance of using different prior 
variances in the Bayesian estimation of vocal tract parameters extracted from 
alveolar nasal /n/ tokens from speakers in the TIMIT corpus. 

 
Fig. 2.  DET plot comparing the performance of vocal tract reflection 
coefficients with MFCCs, both extracted from alveolar nasal /n/ tokens from 
speakers in the TIMIT corpus, as well as fusion of both systems. 



B. Kiel corpus 
We again first compare performance when using different 

prior variances in the Bayesian estimation scheme. Fig. 3 
shows a ROCCH DET plot of systems using vocal tract 
parameters obtained by applying different prior variances 
extracted from alveolar nasal /n/ tokens from speakers in the 
Kiel corpus.  

 
Fig. 3.  DET plot comparing the performance of using different prior 
variances in the Bayesian estimation of vocal tract parameters extracted from 
alveolar nasal /n/ tokens from speakers in the Kiel corpus. 

 
Fig. 4.  DET plot comparing the performance of vocal tract reflection 
coefficients with MFCCs, both extracted from alveolar nasal /n/ tokens from 
speakers in the Kiel corpus, as well as fusion of both systems. 

Here the results were less clear than in the previous experi-
ment. The system using vocal tract parameters estimated using 
a prior precision of 20 showed the lowest EER at 4.6%. 

Fig. 4 shows a comparison of the performance of a system 
based on vocal tract parameters and MFCCs extracted from 
alveolar nasal /n/ tokens from speakers in the Kiel corpus. The 
system based on vocal tract parameters has an EER of 3.4% 
and the system based on MFCC an EER of 2.8%. Fusion of 
both systems does not yield a substantial improvement, with 
an EER of 2.78%. However, due to the low number of 
speakers and thus target trials in the evaluation the results 
should be considered with caution, in particular in the low 
miss probability range. 

IV. DISCUSSION AND CONCLUSION 
The present paper reports on experiments using physiologi-

cally motivated vocal tract parameters modeling both, oral and 
nasal acoustics as features for speaker verification. A Bayesian 
estimation technique is used to obtain reflection coefficients of 
a branched two-tube model of the combined nasal and oral tract 
during alveolar nasal /n/ segments. Reflection coefficients of 
the tube model are used as features. 

Higher values for the prior precision in the Bayesian vocal 
tract estimation generally show better performance than lower 
values (50 for experiments on TIMIT and 20 for experiments 
on the Kiel corpus). In the experiments reported here the vocal 
tract parameters have not been explicitly optimized to attain 
high speaker discrimination, thus the discrimination could 
potentially be improved via such an optimization process. 
Note, however, that the prior precision cannot be set arbitrarily 
high, as the modeling error of the vocal tract model increases 
as the smoothness assumption becomes more dominant [13].  

The results showed generally comparable, but somewhat 
lower performance than a system based on MFCC features. 
However, fusion of both systems provided a substantial in-
crease in performance compared to either of the individual sys-
tems, indicating that they offer complementary information. 

Future work will investigate the performance on more 
realistic conditions faced in speaker verification applications. 
Results from previous work on pole-zero representations of 
nasals suggest a loss in performance when a mobile-telephone 
transmission channel is involved [12]. The Adaptive Multi-
Rate (AMR) codec used in GSM and UMTS mobile telephone 
networks uses order 10 linear prediction to encode the spectral 
envelope, which effectively removes zeros from the spectrum. 
The robustness of the vocal tract estimation scheme under such 
conditions has not yet been investigated. Also, extensions to 
the vocal tract model such as paranasal cavities will be the sub-
ject of further investigations as these models provide a more 
realistic representation of the nasal cavity acoustics and may 
thus be better able to capture speaker-specific properties. 
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