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Abstract

GLOTTEX R⃝ is a software package which extracts informa-
tion about voice source properties, including estimates of prop-
erties related to physical structures of the vocal folds. It has
been proposed that the output of GLOTTEX R⃝ can be used as
part of a forensic-voice-comparison system. We test this using
manually labeled segments from a database of voice recordings
of 60 female Chinese speakers. Performance was assessed rel-
ative to a baseline MFCC GMM-UBM system. GMM-UBM
systems based on features extracted by GLOTTEX R⃝ were com-
bined with the baseline system using logistic-regression fu-
sion. System performance was assessed in three channel condi-
tions: high-quality v high-quality, mobile-to-landline v mobile-
to-landline, and mobile-to-landline v high-quality. Substantial
improvements over the baseline system were not observed.

1. Introduction
Auditory-phonetic (as well as auditory-spectrographic) forensic
voice comparison has often included experience-based subjec-
tive analysis of voice quality (e.g. [1, 2, 3]). “Voice quality”
is normally understood to refer to laryngeal vocal-tract settings
and to refer to physiologically constrained as well as voluntarily
controllable aspects of speech. Objectively-measurable proper-
ties of laryngeal settings such as creaky voice, and pathological
conditions, or less extreme idiosyncrasies in laryngeal physiol-
ogy may be useful features to exploit in data- and statistical-
model-based forensic voice comparison. The study reported
here tests whether this is the case, via an evaluation of the ef-
fectiveness of features extracted by the GLOTTEX R⃝ software
package [4, 5]. The software was originally developed for med-
ical applications, including as a non-invasive diagnostic tool,
e.g., modeling physical properties of the vocal folds, including
pathologies, on the basis of the acoustic signal generated by the
speaker’s vocal tract. Gómez-Vilda et al. [6], however, pro-
pose that GLOTTEX R⃝ would also be effective in forensic voice
comparison.

This research was funded by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA), through the Army Research Laboratory (ARL). All state-
ments of fact, opinion or conclusions contained herein are those of the
authors and should not be construed as representing the official views
or policies of IARPA, the ODNI, or the U.S. Government.

Voice-source features have previously been applied in sev-
eral automatic-speaker-recognition studies. Farrús et al. [7]
reported an increase in performance of an automatic speaker
verification when a system based on jitter and shimmer mea-
surements was fused with a baseline system based on spec-
tral and prosodic features. Plumpe et al. [8] modeled the
glottal flow derivative using the Liljencrants-Fant (LF) model
for coarse structure, and energy and perturbation measures for
fine structure. Addition of these features to a baseline mel-
frequency-cepstral-coefficient (MFCC) system resulted in im-
provement in performance for tests on both high-quality and
landline-telephone recordings. Gudnason and Brooks [9] calcu-
lated MFCCs on the linear-prediction (LP) spectra exacted from
samples taken from the closed-glottis phase of voicing. The lat-
ter were subtracted from regular MFCCs and this was used as a
parameterization of the voice-source spectrum. This lead to an
improvement in performance on a speaker-verification task.

2. Methodology
2.1. Database

The data were extracted from a database of two non-
contemporaneous voice recordings of each of 60 female speak-
ers of Standard Chinese [10]. See Morrison et al. [11] for
details of the data collection protocol. The speakers were all
first-language speakers of Standard Chinese from north east-
ern China, and were aged from 23 to 45. The recordings used
were from an information exchange task conducted over the
telephone: Each of a pair of speakers received a “badly trans-
mitted fax” including some illegible information, and had to
ask the other speaker to provide them with the missing infor-
mation. The original recordings were approximately 10 min-
utes long, with the second recording of each speaker recorded
2–3 weeks after the first. High-quality recordings were made
at 44.1 kHz 16 bit using flat-frequency response lapel micro-
phones (Sennheiser MKE 2 P-C) and an external soundcard
(Roland R⃝ UA-25 EX), with one speaker on each of the two
recording channels.

In the tests reported below, forensic-voice-comparison sys-
tems were constructed using data from the first 20 speakers
(identification numbers: 01–04, 09–20, 22, 25, 26, 28) as back-
ground data, data from the next 20 speakers (29–48) as devel-
opment data, and data from the last 20 speakers (49–68) as test
data.



2.2. Channel degradation

In addition to the original high-quality recordings, the database
also includes versions of the same recordings which have been
degraded by passing them through transmission channels. In the
present study we compare high-quality v high-quality record-
ings, mobile-to-landline v mobile-to-landline recordings, and
mobile-to-landline v high-quality recordings, where on each
trial the first member of each pair is the channel of the nominal
offender recording and the second the channel of the nominal
suspect recordings.

Mobile-to-landline recordings were created as follows: A
mobile telephone (Nokia 2730 classic) was place in a sound
booth (IAC 250 Series Mini Sound Shelter) in the vicinity of a
Roland R⃝ MA-7A loudspeaker which was in turn connected to
a computer via one output channel of a Roland R⃝ UA-25 EX
sound card. A call was established between the mobile tele-
phone and a landline telephone (Polaris NRX EVO 450). The
high-quality recordings were played though the loudspeaker
and the acoustic signal picked up by the built-in microphone
of the mobile telephone through which a call was established
to the receiving telephone. The landline telephone was con-
nected to an input channel of the sound card (not the same chan-
nel as was being used to output the original recording) via a
Trillium Telephone Recording Adapter Studio Interface (REC-
ADPT-SI). Custom software started recording, started playing a
high-quality recording, then stopped recording 500 ms after the
latter recording had finished playing. The degraded signal was
recorded at the same sampling rate as the high-quality recording
(44.1 kHz at 16 bits). The degraded recording was time-aligned
with the original recording by displacing the degraded record-
ing relative to the original recording one frame at a time and
calculating the correlation between the two signals. At the dis-
placement with the highest correlation, the degraded recording
was truncated to the same start and end points as the original
recording. Because of this alignment, the same markers as had
been used to extract the tokens for the high-quality recording
(see §2.3) could than also be used for the degraded recording.

2.3. Segment selection

For the extraction of frequency-domain based voice source fea-
tures in GLOTTEX R⃝ the filtering effects of the vocal tract have
to be reversed [12]. Ideally, this is done using relatively long
speech segments with stationary supralaryngeal vocal-tract con-
figurations (short speech segments do not provide a sufficiently
large sample and rapidly changing segments, such as diph-
thongs, do not provide a sample of a fixed vocal-tract configura-
tion). In medical settings, this is achieved by having the patient
produce sustained vowel sounds, particularly tokens of /a/, but
it is not possible to obtain such speech in forensic contexts. In
the spontaneous speech typical of forensic contexts, the most
appropriate segments to analyze are typically pause fillers, such
as “um” and “ah” in English. In the Chinese database, an num-
ber of pause fillers (/a/, /e/, /n/, /N/) were manually located and
their start and end times marked. Of these, only /n/ had a suffi-
ciently large number of tokens per speaker per recording session
for there to be an a priori expectation of reasonable estimates of
parameters in the forensic-voice-comparison system’s statistical
models. There were between 3 and 73 tokens of /n/ per record-
ing per speaker.

2.4. Voice source features

A number of different measurements of voice-source properties
made by GLOTTEX R⃝ were evaluated. These are listed below.
Each major dot point in the list subsumes a number of features
which were grouped together to form individual forensic-voice-
comparison systems (the abbreviation for each group of features
/ system appears in italics within parenthesis). Features marked
with an asterisk are described in thew sections indicated, de-
tailed descriptions of the full set of features is provided in [4].

• Distortion features and fundamental frequency (distortion, 6
features total):

1. Absolute normalized jitter, measured as ratio of the dif-
ference of f 0 between neighboring phonation cycles
normalized by the average value for the segment.

2. Normalized amplitude shimmer, measured as the ratio
of the difference between maximum peak amplitudes
of neighboring phonation cycles, normalized by the av-
erage value for the segment.

3. Slenderness shimmer. The negative spike of the glot-
tal pulse forms an approximate triangle. The slender-
ness is defined as the height of the triangle divided by
its width. Slenderness shimmer is the ratio of the dif-
ference between the slenderness of neighboring phona-
tion cycles normalized by the average value for the seg-
ment.

4. Area shimmer, measured as the ratio of the difference
of the area under the curve of the glottal source signal
of neighboring phonation cycles, normalized by the av-
erage value for the segment.

5. Glottal-to-noise excitation ratio.

6. Fundamental frequency (f 0).

• First-through-14th cepstral coefficients obtained from the
mucosal wave correlate power spectrum (MWC cepstra, 14
features total). *§ 2.4.3

• Singularities in the mucosal-wave correlate power spectrum
(PSD singularities, 14 features total): *§ 2.4.4

1. Amplitude and frequency of first maximum.

2. Normalized amplitude and frequency of second and
third maxima, and of the first and second minima.

3. Slenderness of the first two minima.

• Relative times of singularities extracted from the decom-
posed glottal source signal, MWC signal, and MWC time-
derivative over a phonation cycle (time based, 9 features to-
tal). See Figure 5.

2.4.1. Separation of glottal source and vocal tract

The voice source parameterization depends on a separation of
the effects of the glottal source and the vocal tract systems us-
ing iterative inverse filtering (Figure 1). After compensating
for the high-pass effect of radiation from the lips (R−1

l (z)), the
voiced signal sl(n) is filtered by a Glottal Pulse Inverse Model
Hg(z), a k-th order prediction error adaptive lattice filter, to re-
move the strong glottal formant spectral envelope [4]. From the
residual, the de-glottalized signal sv(n), parameters of a Vocal
Tract Model FV T (z) are obtained. These estimates are in turn
used in the Vocal Tract Inverse Model HV T (z) on the radiation-
compensated speech signal to cancel the filtering effect of the



vocal tract. From the residual, the parameters of the Glottal
Pulse Model Fg(z) are updated, which in the next iteration are
used as the Glottal Pulse Inverse Model Hg(z). This procedure
is repeated 2–3 times to obtain the glottal source signal sg(n)
[4].
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Figure 1: Procedure for separating the effects of the glottal
source and the vocal tract (from Gómez-Vilda et al. [4]).
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Figure 2: The layered structure of the vocal folds (from Hirose
[13], p. 140).

2.4.2. Voice source parameterization

The vocal folds have a layered structure consisting of the mu-
cosa epithelium, the lamina propria mucosa, and the vocalis
muscle (see Figure 2). Hirano [14] proposed a body-cover
model of the vocal folds, in which the “body” surrounds the
vocalis muscle and the “cover” is formed by the epithelium and
the superficial layer of the lamina propria. Based on this, me-
chanical k-mass models have subsequently been developed to
mathematically describe the dynamic properties of the vocal
folds. The body is characterized by a large mass component
and k − 1 cover masses linked by springs between themselves
and the body mass. Figure 3 shows a two-mass vocal fold model
which captures lateral vocal fold as well as mucosal wave mo-
tion [15].

The vibration of the cover tissue during phonation is com-
monly called the mucosal wave. The upper part of the vo-
cal folds follows the lower part, forming a wave-like motion.
Figure 4 shows the cycle of vocal fold vibration. In k-mass
models, these movements are described by the masses and
springs/dampers.

m1 k1, d1

mass spring

m2

k2, d2
kc, dc

Figure 3: Two-mass vocal fold model (from Story [15]).
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Figure 4: Idealized cycle of vocal fold vibration (from Story
[15], p. 197).

2.4.3. Mucosal-wave correlate power spectrum

The glottal source signal obtained by separating the effects of
the glottal source and the vocal tract (§2.4.1) includes biome-
chanical effects of both the vocal fold body and the cover. To
characterize the latter, the mucosal wave, GLOTTEX R⃝ decom-
poses it in two parts, the Average Acoustic Wave (AAW) rep-
resenting low-order vibration of the vocal folds, i.e., the vocal
fold body, and the Mucosal Wave Correlate (MWC) capturing
the higher-order vibrations of the cover. The AAW represents
a second order system response (one-mass model) [4] and is
defined as a sinusoid,

ssk(n) = y0k sin(ωknτ), n ∈ Nk. (1)



Nk represents the samples in the k-th phonation cycle, ωk =
π/Tk is the angular frequency corresponding to double the cy-
cle period, τ is the sampling period, and y0k is the optimal am-
plitude which is adaptively minimized to the difference between
the AAW and glottal source signal. The details of the algorithm
are described in Gómez-Vilda et al. [4]. The mucosal wave cor-
relate is then obtained as the difference of the glottal source and
the average acoustic wave as

smk(n) = sgk(n)− ssk(n). (2)

The power spectrum calculated from the mucosal wave corre-
late is then characterized by obtaining first-to-14th order cep-
stral coefficients.
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Figure 5: Estimating times of instances of maxima and times of
phonation phases from the glottal source, mucosal wave corre-
late, and derivative signals.

2.4.4. MWC power spectrum singularities

Figure 6 shows an example of the mucosal wave correlate power
spectrum. There are a series of local maxima and minima (col-
lectively designated as singularities) which are related to the
vocal-fold biomechanics [4]. GLOTTEX R⃝ measure the fre-
quencies and amplitudes of the singularities indicated in Fig-
ure 6. The slenderness of the first two minima in the spectrum
(σm1, σm2) is measured as:

σmq =
fMq(2Tmq − TMq+1 − TMq)

2(fMq+1 − fMq)
; q ∈ {1, 2}. (3)

where T and f indicate absolute amplitudes and frequen-
cies, and m indicates a minimum and M indicates a maximum.
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Figure 6: Estimating singularities of the mucosal wave correlate
power spectral density.

2.5. Likelihood ratio calculation

2.5.1. Voice-source-feature systems

Likelihood ratios were calculated by using the Gaussian mixture
model - universal background model (GMM-UBM) approach
[16]. A UBM was trained using the background data pooled
across both recording sessions. Suspect GMMs were trained via
maximum a-posteriori (MAP) adaptation from the UBM. Full
covariance matrices and a relatively small numbers of Gaus-
sians were used, since in preliminary work this was found to
give better performance than diagonal covariance matrices and
larger numbers of Gaussians. For each group of features, the
optimal number of Gaussians in the mixture and the optimal
number of adaptation iterations were empirically determined
via tests using development data. Table 1 shows the number
of Gaussians and number of MAP adaptation iterations applied
to each group of features in each channel condition.

Table 1: Number of Gaussians in the mixture and number of
MAP adaptation iterations for each group of features.

high-quality v high-quality recordings:
feature group num Gaussians num iterations
Distortion 12 1
MWC Cepstra 32 3
PSD Singularities 8 1
Time-based 32 1

mobile-to-landline v mobile-to-landline recordings:
feature group num Gaussians num iterations
Distortion 16 3
MWC Cepstra 16 1
PSD Singularities 8 1
Time-based 16 1

mobile-to-landline v high-quality recordings:
feature group num Gaussians num iterations
Distortion 12 1
MWC Cepstra 16 5
PSD Singularities 8 2
Time-based 8 1

For each comparison trial, a score was obtained as in Equa-
tion 4:

score =
1

k

k∑
i=1

(log p(Xi|λspeaker)− log p(Xi|λUBM)). (4)

where Xi are the feature vectors from the offender recording,
and λspeaker and λUBM are the GMM for the speaker and the
background, respectively.

Scores calculated on the development set were used to
calculate weights for logistic-regression calibration and fusion
[17, 18, 19, 20] which was subsequently applied to convert the
scores from the test set to likelihood ratios (calculations were
performed using [21] and [22]).

In both the development and test sets, every speaker’s Ses-
sion 1 recording (nominal offender recording) was compared
with their own Session 2 recording (nominal suspect record-
ing), and also with every other speaker’s Session 2 and Ses-
sion 1 recordings separately (nominal suspect recordings). This
resulted in 20 scores from same-speaker comparisons and 760
pairs of scores from different-speaker comparisons.



In the channel-mismatch condition, the nominal offender
recordings were mobile-to-landline, and the nominal suspect
recordings and the background recordings were high-quality
recordings.

2.5.2. Baseline system

The voice-source-feature-based systems were fused with a
baseline MFCC GMM-UBM system: 16 MFCC values were
extracted every 10 ms over the entire speech-active portion of
every recording using a 20 ms wide hamming window. Delta
coefficient values were also calculated and included in the sub-
sequent statistical modeling [23]. Feature warping [24] was ap-
plied to the MFCCs and deltas before subsequent modeling. On
the basis of tests on the development set the number of Gaus-
sians in the GMM-UBM was set to 1024.

3. Results
In the results below we focus on the performance of systems
which are fusions of voice-source-feature systems with the
baseline system and the performance of these systems relative
to the baseline system.

3.1. Evaluation metrics

The validity and reliability of the systems was evaluated using
the log likelihood-ratio cost (Cllr) as a metric of validity (accu-
racy), and an estimate of the 95% credible interval (95% CI) as
a metric of reliability (precision) [25, 26] (Cllr was calculated
using the mean procedure and the 95%CI using the parametric
procedure). Readers familiar with automatic speaker recogni-
tion but not forensic voice comparison should note that metrics
such as equal error rate (EER) and plots such as detection error
trade-off (DET) [27] are not presented here since they are based
on imposing hard thresholds on posterior probabilities and are
therefore incompatible with the likelihood-ratio framework for
the evaluation of forensic evidence [25, 28].

Since validity and reliability results must be simultaneously
considered, these are plotted in two dimensions with the 95% CI
on the x axis and Cllr on the y axis. For both metrics, smaller
values indicate better performance, hence results closer to the
origin are better (both are constrained to be greater than zero
and, if the system is appropriately calibrated, Cllr is not ex-
pected to be greater than one). Tippett plots of selected systems
are also provided (see [29] §99.330 for an introduction to the
interpretation of Tippett plots).

3.2. High-quality v high-quality recordings

Figure 7 shows the results for the high-quality v high-quality
tests. The baseline system had a Cllr of 0.021 and a log10 95%
CI of 1.42 (a Tippett plot is provided in Figure 8). Of the fu-
sions of individual voice-source-feature systems with the base-
line system, no fused system clearly outperformed the baseline
system.

3.3. Mobile-to-landline v mobile-to-landline recordings

Figure 11 shows the results for the mobile-to-landline v mobile-
to-landline tests. The baseline system had a Cllr of 0.099 and a
log10 95% CI of 2.11 (a Tippett plot is provided in Figure 10).
Of the fusions of individual voice-source-feature systems with
the baseline system, no fused system clearly outperformed the
baseline system.
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Figure 7: Measures for validity (Cllr) and reliability (log10
95% credible interval) for the voice source feature systems in-
dividually (red) as well as after fusion with the generic fully-
automatic baseline system (blue) (high-quality v high-quality
recordings).
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Figure 8: Tippett plot of the baseline fully-automatic MFCC-
based system (high-quality v high-quality recordings).

3.4. Mobile-to-landline v high-quality recordings

Figure 9 shows the results for the mobile-to-landline v high-
quality tests. The baseline system had a Cllr of 0.064 and a
log10 95% CI of 3.11. The best two fused systems were PSD
singularities with a Cllr of 0.064 and a log10 95% CI of 3.07,
and MWC cepstra with a Cllr of 0.069 and a log10 95% CI of
2.98. These showed small improvements in reliability with no
degradation or only slight degradation in validity. This suggests
that the use of these voice-source features may help in the most-
challenging channel-mismatch condition, but given the small
differences in performance observed, one would want to attempt
to replicate the results on other databases before making any
stronger claims. Tippett plots of the baseline system and the
MWC cepstra system are provided in Figure 12.
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Figure 9: Measures for validity (Cllr) and reliability (log10
95% credible interval) for the voice source feature systems in-
dividually (red) as well as after fusion with the generic fully-
automatic baseline system (blue) (mobile-to-landline v mobile-
to-landline recordings).
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Figure 10: Tippett plot of the baseline fully-automatic MFCC-
based system (mobile-to-landline v mobile-to-landline record-
ings).

4. Conclusion
The present paper evaluated the use of voice-source features ex-
tracted by GLOTTEX R⃝ as part of a forensic-voice-comparison
system. Features were extracted from tokens of a pause filler,
/n/, in a database of recordings of female speakers of Stan-
dard Chinese. We were not able to obtain any substantial im-
provement in performance over a baseline MFCC GMM-UBM
system in any of the three channel conditions tested (high-
quality v high-quality recordings, mobile-to-landline v mobile-
to-landline recordings, and mobile-to-landline v high-quality
recordings).

Potential reasons for failing to find improvement could
be that for some sessions of some speakers, the number of
tokens was very small. Also, although the manufacturer of
GLOTTEX R⃝ assured us that the procedure could be applied to
nasals, the inverse vocal-tract filtering in GLOTTEX R⃝ appears
to assume an all-pole model of speech production, and it may
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Figure 11: Measures for validity (Cllr) and reliability (log10
95% credible interval) for the voice source feature systems in-
dividually (red) as well as after fusion with the generic fully-
automatic baseline system (blue) (mobile-to-landline v high-
quality recordings).
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Figure 12: Tippett plot of the baseline fully-automatic MFCC-
based system (top) and after fusion with the MWC cepstra sys-
tem (bottom) (mobile-to-landline v high-quality recordings).

be that it does not adequately account for zeros in the spectra
of nasals. The codecs in mobile-telephone systems also use all



-pole models which would not effectively model spectral zeros,
and hence an all-pole assumption in GLOTTEX R⃝ may not be
problematic in the mobile-to-landline channel conditions. One
should also bear in mind that useful information could be ex-
tracted even if there was a mismatch between theory and prac-
tice.

Although we have not found any evidence to support
Gómez-Vilda et al.’s [6] proposal that GLOTTEX R⃝ would be
effective in forensic voice comparison, they presented some em-
pirical results which supported their proposal. Gómez-Vilda et
al. [6] lacks details of their experimental methodology, but the
results appear to be the same as those reported in Gómez-Vilda
et al. [30] which provides a little more detail on the method-
ology. The features that they report using do not appear to
be exactly the same as those output by the current version of
GLOTTEX R⃝ . The database of voice recordings they used con-
sisted of phonetically-balanced read speech from apparently a
single recording session per speaker [31], and apparently only
high-quality recordings were analyzed. Their data were there-
fore highly unrealistic compared to what one would expect in
forensic casework. Our data, non-contemporaneous recordings
of spontaneous telephone speech, comes much closer to be-
ing forensically realistic. As best we can tell, they sampled
the voice-source features using 32-ms wide sliding windows
over all the voiced sections of their recordings, rather than sam-
pling only within tokens of a particular phonetic-unit as we did.
Rather than using logistic-regression fusion as we did, they con-
catenated voice-source features with baseline regular MFCCs in
a GMM-UBM system. As an additional test of GLOTTEX R⃝ for
forensic voice comparison, we emulated this basic methodol-
ogy in part by extracting features from the whole recordings.
Given the restrictions of the software, we partitioned the speech
active portion of the recordings into smaller segments of 200
ms duration and used GLOTTEX R⃝ for feature extraction using
the same setting as before. Due to processing constraints we
used the same GMM-UBM implementation as in the baseline
MFCC system using diagonal covariances. As before, the num-
ber of Gaussians in the mixture was determined based on tests
on the development set (64, 128, 256, 512, 1024).

Figure 13 shows the results for the high-quality v high-
quality tests. Performance after fusion with the baseline re-
sulted in substantial increases in validity with small decreases
in reliability. In the high-quality v high-quality condition, this
approach, does appear to result in better performance than the
segmental approach (results for other conditions were not avail-
able as of the submission deadline for the present paper).
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