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Abstract
This study compares three statistical models used to cal-
culate likelihood ratios in acoustic-phonetic forensic-voice-
comparison systems: Multivariate kernel density, principal
component analysis kernel density, and a multivariate normal
model. The data were coefficient values obtained from discrete
cosine transforms fitted to human-supervised formant-trajectory
measurements of tokens of /iau/ from a database of recordings
of 60 female speakers of Chinese. Tests were conducted using
high-quality recordings as nominal suspect samples and mobile-
to-landline transmitted recordings as nominal offender samples.
Performance was assessed before and after fusion with a base-
line automatic mel frequency cepstral coefficient Gaussian mix-
ture model universal background model system. In addition,
Monte Carlo simulations were used to compare the output of
the statistical models to true likelihood-ratio values calculated
on the basis of the distribution specified for a simulated popula-
tion.
Index Terms: forensic voice comparison, likelihood ratio, for-
mant trajectories, validity, reliability

1. Introduction
In forensic inference and statistics there is wide support for the
position that the logically correct way for a forensic scientist to
evaluate the strength of forensic evidence is using a likelihood
ratio [1, 2, 3]. A likelihood ratio is the probability of the ob-
served evidence if the prosecution hypothesis were true versus
if the defense hypothesis were true [4, 5]. Acoustic-phonetic
approaches to forensic voice comparison predominantly used
the multivariate kernel density (MVKD [6]) model to calculate
likelihood ratios [7, 8, 9, 10, 11, 12] (see also a review in [13]).
Concerns about the model’s robustness, in particular numeri-
cal stability issues with the model’s implementation and the
difficulty of kernel density estimation, in particular when us-
ing a large number of features, prompted the development of
the principal component analysis kernel density likelihood ra-
tio (PCAKLR [14]) model. The method uses PCA to obtain
a decorrelating transformation matrix and computes the likeli-
hood ratio as the product of univariate likelihood ratios of the
projected features. The univariate likelihood ratios are com-
puted using a modified kernel density model [15, p. 338]. An-
other alternative to the MVKD model is a multivariate normal
(MVN) model [6, 16], which assumes normal distributions for
both within and between-speaker variation. While these as-
sumptions may be a poor fit for many types of acoustic-phonetic
features (see e.g. Rose [17, §5.1]), the model’s lower vari-
ance may result in overall better performance. Recent exper-
iments on acoustic-phonetically inspired approaches based on
features of nasal segments have explored its use for statistical

modeling [18]. A previous study comparing the MVKD model
with the Gaussian mixture model universal background model
(GMM-UBM [19]) approach for modeling formant-trajectory
features extracted from Australian English diphthongs found
that the latter achieved better validity and reliability when sev-
eral systems, each based on a different phonetic unit, were fused
[20]; however, a later study found that, when applied to a single
phonetic unit, MVKD outperformed the GMM-UBM approach
[21]. This was attributed to the high feature dimensionality and
the relatively lower number of tokens available for training.

This study compares MVKD, PCAKLR, and MVN mod-
els for the calculation of likelihood ratios in formant-trajectory-
based forensic-voice-comparison systems. The data were coef-
ficient values obtained from discrete cosine transforms fitted to
human-supervised formant-trajectory measurements of tokens
of /iau/ from a database of recordings of 60 female speakers of
Chinese. Tests were conducted using high-quality recordings
as nominal suspect samples and mobile-to-landline transmitted
recordings as nominal offender samples. Performance was as-
sessed before and after fusion with a baseline automatic mel
frequency cepstral coefficient Gaussian mixture model univer-
sal background model (MFCC GMM-UBM) system. In addi-
tion, Monte Carlo simulations were performed to compare the
output of the statistical models to true likelihood-ratio values
calculated on the basis of the distribution specified for a simu-
lated population. The formant-trajectory data of all speakers in
the database was used to create a simulated population sample.

2. Methodology
2.1. Data

The data were extracted from a database of two non-
contemporaneous voice recordings of each of 60 female speak-
ers of Standard Chinese [22]. See [23] for details of the data col-
lection protocol. The speakers were all first-language speakers
of Standard Chinese from northeastern China, and were aged
from 23 to 45 (with most being between 24 and 26). The record-
ings used were from an information-exchange task conducted
over the telephone: Each of a pair of speakers received a “badly
transmitted fax” including some illegible information, and had
to ask the other speaker to provide them with the missing infor-
mation. The original recordings were approximately 10 minutes
long. The first and second recording sessions were separated
by 2-3 weeks. High-quality recordings were made at 44 100
sampling frequency 16 bit quantization using flat-frequency-
response lapel microphones (Sennheiser MKE 2 P-C) and an
external soundcard (Roland® UA-25 EX), with one speaker on
each of the two recording channels.

In addition to the original high-quality recordings, degraded
sets of recordings were created by passing the high-quality set



of recordings through a mobile-to-landline transmission chan-
nel. The details of the procedure are described in [11, §2.2].
The high-quality condition was treated as the condition of the
suspect (known identity) recording, and the mobile-to-landline
condition was treated as the condition for the offender (ques-
tioned identity) recording.

Stressed tokens of /iau/ on tone 1 were manually located
and marked. There were between 6 and 41 stressed tokens of
/iau/ per speaker per recording, median 21.5. /iau/ tokens were
taken from realizations as a single word (“yao” one), from the
obstruent-initial open-syllable contexts /piau/ “biao” and /tCiau/
“jiao” (Standard Chinese contrasts voiceless plosives and af-
fricates, as in these words, versus voiceless-aspirated plosives
and affricates).

2.2. Formant-trajectory measurement & parameterization

Human-supervised measurements of the trajectories of the first
three formants (F1, F2, and F3) of each vowel token were made
using FORMANTMEASURER [24]. See [12, 11] for details on
the procedure for human-supervised formant-trajectory mea-
surement. Discrete cosine transforms (DCTs) were fitted to the
measured formant trajectories of all /iau/ tokens. See [8] for de-
tails of the procedure. In line with previous studies [11, 12, 21],
the zeroth through fourth DCT coefficient values from F2 and
F3 were used as variables in the present study.

2.3. Likelihood ratio calculation

2.3.1. Multivariate kernel density model

The multivariate kernel density (MVKD [6]) model assesses the
difference between the samples taken from the suspect and the
offender sample with respect to a background distribution es-
timated from a given population sample. While within-source
variation is modeled by a Gaussian distribution, between-source
variation is modeled using kernel density estimation. See [20]
for a detailed discussion of the procedure with respect to its ap-
plication in forensic voice comparison.

2.3.2. Principal component analysis kernel density LR model

In the principal component analysis kernel density likelihood
ratio (PCAKLR [14]) model, problems with robustness of
the MVKD model when using high-dimensional features are
sidestepped by using PCA to obtain a decorrelating transform
matrix and then computing the likelihood ratio as the product
of univariate likelihood ratios of the projected features.

First, the mean of each feature is calculated from the sus-
pect and offender samples and the samples of the speakers in
the background sample and is then subtracted from each of the
samples. The covariance C is then estimated from the mean-
subtracted samples. The eigenvectors and eigenvalues of the
covariance matrix are computed as in Eq. (1a). V is the ma-
trix of eigenvectors vm and Γ is a diagonal matrix composed of
the eigenvalues γm corresponding to the eigenvectors vm (off-
diagonal values are zero). The suspect and offender samples
and the samples of the speakers in the background sample are
then transformed as in Eq. (1b).

V−1CV = Γ (1a)

y = VTx (1b)

Univariate likelihood ratios are then computed for each di-
mension of the transformed features individually using a modi-

fied kernel density model given in Eq. (2) [15, p. 338],
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where x̄s and x̄o are the mean of the suspect and offender
samples, z̄i is the mean of speaker i in the background sam-
ple, k is the number of background speakers, σ2 and s2 are
the within- and between-speaker variances, n and m are the
number of tokens in the suspect and offender samples, a2 =√

1/m+ 1/n is the scaling factor of the within-source vari-
ance, w = (nx̄s + mx̄o)/(m + n) is the weighted suspect
and offender mean, and λ is the smoothing factor for the kernel
density estimate.

The final likelihood ratio is then calculated as the product
of the individual univariate likelihood ratios.

2.3.3. Multivariate normal model

The multivariate normal (MVN [6]) model assesses the dif-
ference between the samples taken from the suspect and the
offender sample with respect to a background distribution es-
timated from a given population sample. Both within- and
between-source variation are modeled by Gaussian distribu-
tions. See [15] for a detailed discussion of the procedure.

2.4. Baseline MFCC GMM-UBM system

The baseline forensic-voice-comparison system extracted 16
mel-frequency-cepstral-coefficients (MFCCs) every 10 ms over
the entire speech-active portion of each recording using a 20
ms wide hamming window. Delta coefficient values were also
calculated and included in the subsequent statistical modeling
[25]. Feature warping [26] using a three second sliding window
was applied to the MFCCs and deltas before subsequent model-
ing. A GMM-UBM model [19] was built using the background
data to train the background model. After tests on the develop-
ment set using different numbers of Gaussians, the number of
Gaussians used for testing was set to 256. Extraction of MFCCs
and training of GMMs was performed using the Hidden Markov
Toolkit [27].

2.5. Use of background, development, and test sets

In the tests of forensic-voice-comparison systems described be-
low, tokens from the first 20 speakers were used as background
data, data from the next 20 speakers were used as development
data, and data from the last 20 speakers were used as test data.

In both the development and test sets, every speaker’s Ses-
sion 1 recording (nominal offender recording) was compared
with their own Session 2 recording (nominal suspect recording)
for a same-speaker comparison and with every other speaker’s
Session 1 as well as Session 2 recording (nominal suspect
recordings) as different-speaker comparisons. The nominal of-
fender recordings were mobile-to-landline transmitted record-
ings, and the nominal suspect recordings and the background
were high-quality recordings. Both Session 1 and Session 2
recordings were included in the background. The development
set was used to calculate scores which were then used to cal-
culate weights for logistic-regression calibration [28, 29, 30]
which was applied to convert the scores from the test set to



0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

95% Credible Interval (±orders of magnitude)

lo
g

 li
k

e
li

h
o

o
d

 r
a

ti
o

 c
o

st
 (

C
ll

r−
m

e
a

n
)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ll

r−
p

o
o

le
d

MVKD

PCAKLR

MVN

MFCC GMM−UBM

/iau/  fusion

Figure 1: Measures for validity (Cllr) and reliability (log 10
95% credible interval) for systems using the MVKD, PCAKLR,
and MVN models on /iau/ tokens individually (blue) as well as
after fusion with the baseline MFCC GMM-UBM system (red).

likelihood ratios. Logistic regression was also used to fuse the
scores from multiple individual systems and convert them to
likelihood ratios [31].

3. Results
The validity and reliability of the systems was evaluated using
the log likelihood-ratio cost (Cllr) as a metric of validity (ac-
curacy), and an estimate of the 95% credible interval (95% CI)
as a metric of reliability (precision) [32] (Cllr-mean was calcu-
lated using the mean procedure and the 95%CI using the para-
metric procedure; Cllr-pooled gives the log likelihood ratio cost
calculated using the pooled procedure). Readers familiar with
automatic speaker recognition but not forensic voice compari-
son should note that metrics such as equal error rate (EER) and
plots such as detection error trade-off (DET) [33] are not pre-
sented here since they are based on imposing hard thresholds on
posterior probabilities and are therefore incompatible with the
likelihood-ratio framework for the evaluation of forensic evi-
dence [32, 20]. Results were also graphically represented using
Tippett plots (for an introduction to the interpretation of Tippett
plots see [32]).

Figure 1 shows the results for the mobile-to-landline v high-
quality tests. The baseline MFCC GMM-UBM system had a
Cllr-mean of 0.243 and a log10 95% CI of 2.728. Fusion of
the MVKD-based system with the baseline system resulted in a
substantial improvement in validity (Cllr-mean 0.119, −51%)
at a loss in reliability (log10 95% CI 3.5, +28%). Fusion of the
PCAKLR-based system with the baseline system resulted in a
smaller improvement in validity (Cllr-mean 0.208, −14%) at
substantially improved reliability (log10 95% CI 2.2, −19%).
Fusion of the MVN-based system with the baseline system re-
sulted in minor improvements in both validity (Cllr-mean 0.223,
−8%) and reliability (log10 95% CI 2.678, −2%). In terms of
the pooled log likelihood ratio cost (Cllr-pooled) shown on the
right in Figure 1, fusion of the MVKD-based system with the
baseline system provided the highest improvement in perfor-
mance, followed by the PCAKLR-based and the MVN-based
systems.

Figure 2 shows Tippett plots of the baseline MFCC GMM-
UBM system (left) and after fusion with systems based on the
MVKD, PCAKLR, and MVN models. Reduction in Cllr ap-

pears to be primarily due to large magnitude log likelihood
ratios supporting consistent-with-fact hypotheses getting even
larger. For the MVKD-based system there is also a small de-
crease in the proportion of positive log likelihood ratios from
different-speaker comparisons which, contrary to fact, gave
greater support to the same-speaker hypothesis than to the
different-speaker hypothesis.

The results reported here are of tests where the number of
tokens per recording was not controlled. Restriction to six /iau/
tokens per recording session resulted in a large deterioration in
performance (Cllr values before fusion of 0.9–1) and a simi-
lar, yet less pronounced, relative pattern of performance for the
three statistical models.

4. Monte Carlo simulation
In practice, the true statistical distribution for a given population
sample is not known. Following the approach in [34], Monte
Carlo simulation is used to compare the output of the three sta-
tistical models to true likelihood-ratio values calculated on the
basis of distributions specified for a simulated population.

In order not to diverge from the distribution of formant-
trajectory-based measurements, a simulated population sample
was generated based on the data samples of all speakers in the
database. A set of 1000 simulated speakers were generated as
follows: First, one recording session was randomly selected
from the 120 recording sessions. Then, 10 tokens were uni-
formly sampled from the tokens from the high-quality record-
ing (suspect condition) of that session. The parameters of a
multivariate Gaussian are then estimated from that sample by
calculating the mean and covariance of the sample. From this
multivariate Gaussian, 30 observations were randomly gener-
ated as suspect-condition sample. Further, 10 tokens were uni-
formly sampled from the tokens from the mobile-to-landline
transmitted recording (offender condition) of the other record-
ing session of the same speaker, i.e., if the Session 1 record-
ing was selected to generate the suspect-condition sample, then
the Session 2 recording was selected to generate the offender-
condition sample, and vice versa for Session 2 and Session 1.
The parameters of a multivariate Gaussian are then estimated
from that sample by calculating the mean of the sample and
calculating the covariance as weighted average of the sample
covariance and the pooled population covariance. From this
multivariate Gaussian, 30 observations were randomly gener-
ated as offender-condition sample. Random numbers were gen-
erated using MATLAB’s mvnrnd and randi functions. Of the
1000 simulated speakers, 100 were selected as test set and the
remaining 900 as background set.

True likelihood ratios based on the distribution of the pop-
ulation specified for the simulation were calculated as follows:

LR =
f(x̄o|µs,Σs)

1
J

∑J
j=1 f(x̄o|µj ,Σj)

, (3)

where x̄o is the mean of the offender sample, µs and Σs are
the mean and covariance matrix computed from the randomly
generated suspect sample, µj and Σj are the means and co-
variance matrices computed from each of J = 900 randomly
generated suspect-condition speaker samples in the background
set, and f(·) is the Gaussian probability density function. Simi-
larly to the evaluation using real data, every test speaker’s of-
fender sample was compared with their own suspect-sample
for a same-speaker comparison and with every other speaker’s
suspect sample as different-speaker comparisons. True like-
lihood ratios and likelihood-ratio estimates from the MVKD,
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Figure 2: Tippett plots of the baseline MFCC GMM-UBM system (left-most plot) and after fusion with systems based on the MVKD,
PCAKLR, and MVN models (mobile-to-landline v high-quality recordings).

Table 1: Root-mean-square (RMS) deviation between estimated
and true likelihood ratio values over simulated suspect and of-
fender comparisons.

raw LR calib. LR

MVKD raw 47.54 81.57
calib. 81.35 0.39

PCAKLR raw 621.46 702.51
calib. 81.63 1.14

MVN raw 78.46 4.06
calib. 81.18 0.54

PCAKLR, and MVN models were calculated for each speaker
comparison.

The likelihood-ratio output of statistical models typically
used in forensic voice comparison usually has to be calibrated
(scores converted to likelihood ratios) before use [35, 29, 30].
For this evaluation, a set of calibrated likelihood ratios is com-
puted in addition to the raw likelihood ratios by calibrating raw
likelihood ratios using logistic-regression. Calibration weights
were estimated using leave-one-out crossvalidation from the
raw likelihood ratios.

Table 1 shows the root-mean-square (RMS) deviation be-
tween true log-likelihood-ratio values (raw and calibrated) and
estimated log-likelihood-ratio values (raw and calibrated) of
simulated suspect and offender comparisons. Raw likelihood-
ratio values show a large deviation, particularly for PCAKLR,
highlighting the importance of calibration. After calibration,
the RMS deviation for all three models is very similar (about
81). When comparing the calibrated likelihood-ratio outputs
with the calibrated true likelihood ratio values, the MVKD-
based system shows the lowest deviation, closely followed by
the MVN and PCAKLR-based models.

5. Discussion & Conclusions
The present paper assessed the performance of multivariate ker-
nel density (MVKD), the principal component analysis ker-
nel density likelihood ratio (PCAKLR), and multivariate nor-
mal (MVN) models for likelihood-ratio calculation in acoustic-
phonetic forensic-voice-comparison systems. Each method was
applied to the same set of data. The data were coefficient val-
ues obtained from discrete cosine transforms fitted to human-
supervised formant-trajectory measurements of tokens of /iau/
from a database of recordings of 60 female speakers of Chinese.
Tests were conducted using high-quality recordings as nomi-
nal suspect samples and mobile-to-landline transmitted record-

ings as nominal offender samples. Performance was assessed
as degree of improvement over a baseline MFCC GMM-UBM
system. Overall, the MVKD model provided the highest im-
provement in validity, while reliability deteriorated. PCAKLR
showed small improvements in validity and sizable improve-
ment in reliability. The multivariate normal (MVN) model
showed only minor improvements in both validity and reliabil-
ity.

Monte Carlo simulations were used to compare the output
of the statistical models to true likelihood-ratio values calcu-
lated on the basis of the distribution specified for a simulated
population. When raw likelihood-ratio scores were calibrated,
none of the methods clearly outperforms the others; however,
the MVKD model showed the lowest RMS deviation when both
its output and the true likelihood-ratio values were calibrated.

The present study only tested one phonetic unit (/iau/) in
recordings of female speakers using one speaking style under
a specific mismatch condition. While these findings can be
seen as indication of performance under conditions similar to
the ones tested, we consider testing of validity and reliability
under conditions reflecting those of the case under investigation
using data drawn from the relevant population as an essential
principle for acceptable practice in forensic voice comparison.
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