The importance of using between-session test data in evaluating the performance of forensic-voice-comparison systems

Ewald Enzinger, Geoffrey Stewart Morrison

Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, Australia
e.enzinger@student.unsw.edu.au, geoff-morrison@forensic-voice-comparison.net

Abstract

In this paper we report on a study which demonstrates the importance of using non-contemporaneous test data in evaluating the validity and reliability in forensic-voice-comparison systems. We test four different systems: one MFCC GMM–UBM, one vowel formant-trajectory based, one nasal spectra based, and the fusion of the three systems. Each system is tested on the same set of test recordings, including same-speaker and different-speaker pairs. In one condition, the same-speaker pairs are from contemporaneous (within-session) recordings and in the other they are from non-contemporaneous (between-session) recordings. Within-session testing always overestimated the performance of the systems compared to between-session testing.

Index Terms: session variability, likelihood ratio, validity, reliability, forensic voice comparison

1. Introduction

In forensic casework there is always a difference in time between when the recording of the offender is made and when a recording of a suspect is made. Thus in cases where the suspect and offender recordings are produced by the same speaker, they are produced by the same speaker speaking on different occasions. The characteristics of a person’s voice are expected to vary more from occasion to occasion than on a particular occasion (see [1], p. 235; [2], p. 12). Factors increasing variability include, amongst others, differences due to relaxation versus stress on vocal folds (e.g. when speaking the first time in the morning versus speaking for a long time), state of health (e.g. nasal congestion, ‘cold speech’ [3], laryngitis), speaking style, emotional state, as well as other random or pseudorandom variation from occasion to occasion. Given these obvious influences, an appropriate default assumption would be that between-session variability does matter for forensic voice comparison. If one were to test the performance of a forensic voice comparison system using same-session data, one would be assuming that between-session variability does not matter and have to be able to present evidence to justify this assumption.

The existence of between-session variability affecting distributions of features extracted from speech samples of a speaker has been acknowledged in both forensic-phonetic (e.g. [2], p. 106; [4]) and automatic-speaker-recognition communities (e.g. [5, 6]). However, empirical studies on forensic voice comparison have often not accounted for this, and have tested using data obtained from a single recording session (for example, formants [7], formant trajectories [8, 9, 10, 11], voice source [12], and automatic systems [13]).

Authors often acknowledge the need for between-session testing, but perform within-session testing because they are using convenient databases which do not include multiple non-contemporaneous recordings of each speaker; however, [11] (p. 33) claims that “the importance of non-contemporaneity and the issue of whether it furnishes greater within-speaker variation than in a single natural recording remains an empirical question.”

In this paper we investigate the validity and reliability (accuracy and precision) of four different systems: one mel-frequency-cepstral-coefficient Gaussian-mixture model (MFCC GMM–UBM) based, one vowel formant-trajectory based, one nasal-spectra based, and the fusion of the three aforementioned systems. Each system was trained and tested using the same database of voice recordings. In this investigation we are not concerned with between-session effects due to recording- and transmission-channel differences or speaking-style differences and do not aim to systematically investigate differences due to state of health or fatigue. Rather, we focus on naturally occurring occasion-to-occasion variability.

Data obtained from each of two recording sessions was divided into two non-overlapping parts to allow for within- and between-session same-speaker comparisons. Speaking-style as well as the amount of data used for offender and suspect samples were controlled. In the analysis and presentation of results we focus on same-speaker comparisons, since different-speaker comparisons are by definition between-session. Since the amount of data employed is limited, the absolute performance of the system is of less interest than the relative differences in performance between the two conditions.

To emulate a set of conditions which may be representative of forensic casework, all comparisons involve a mismatch in transmission channel, a common feature of forensic speech material. Data used as nominal offender samples are taken from a recording of a mobile-to-landline transmission and data used as nominal suspect samples are taken from a high-quality recording. This mismatch is accounted for in the modeling of the background data, data used for calibration training, as well as data used for testing.

2. Methodology

2.1. Data

The data were extracted from a database of two non-contemporaneous voice recordings of each of 60 female speakers of Standard Chinese (Mandarin, Putonghua). See [14] for details of the data collection protocol. The first and second recording sessions were separated by 2-3 weeks. High-quality recordings were made at 44.1 kHz 16 bit using flat-frequency response lapel microphones (Sennheiser MKE 2 P-C) and an
was 12.

2.2. Forensic-voice-comparison systems

2.2.1. Automatic MFCC GMM–UBM system

The automatic MFCC GMM–UBM system was of generic design. 16 Mel-frequency cepstral-coefficient (MFCC) values were extracted every 10 ms over the entire speech-active portion of each recording using a 20 ms wide hamming window. Delta coefficient values were also calculated [15]. Feature warping [16] was applied to the MFCCs and deltas before subsequent modelling. A Gaussian mixture model - universal background model (GMM–UBM, [17]) was built using the background data to train the universal background model. After tests on the development set in order to optimize the number of Gaussians in the model, the number of Gaussians used for testing was 1024.

2.2.2. Formant-trajectory system

Manual formant measurements were made of the formant trajectories of stressed /au/ triphthong tokens on tone 1 using the FORMANTMEASURER software [18]. Discrete cosine transforms (DCTs) were fitted to time-normalized trajectories of the second and third formant. The 0th through 3rd coefficient values used as input to Aitken & Lucy’s multivariate kernel density formula (MVKD) [19]. See [20] for details on the procedure.

2.2.3. Nasal system

Spectral characteristics of syllable-initial bilabial nasal stop (/m/) tokens were modelled by pole-zero model estimates obtained from the middle 70% of the segments [21]. The order of the denominator and numerator polynomials was set to 13 and 7, respectively. Cepstral coefficients were computed from the pole-zero model envelopes and used as input to the MVKD formula. After tests on the development set in order to optimize the number of cepstral coefficients, the number used for testing was 12.

2.2.4. Calibration and fusion

Individual systems were calibrated and fused using logistic-regression calibration and fusion [22, 24, 25, 26, 27]. The weights for the linear transform were obtained using the pooled procedure [28] from scores calculated from the development set and then applied to the scores from the test set.

2.3. Evaluation procedure

In order to control for the amount of information used for within-session test comparisons and between-session test comparisons, each condition used the same amount of information. The amount of information was defined according to the number of tokens of a particular phoneme or the number of frames, depending on the procedure employed for extracting information from the acoustic signal. Each recording was split into two parts (part 1 and part 2), each containing the same amount of information (5 tokens of /iau/ for the formant-trajectory system, 10 tokens of /m/ for the nasal system, and 6016 frames for the MFCC GMM-UBM system).

Within-session same-speaker comparisons were made by comparing session 1 part 1 with session 1 part 2, and by comparing session 2 part 1 with session 2 part 2. Between-session same-speaker comparisons were made by comparing session 1 part 1 with session 2 part 1, and by comparing session 1 part 2 with session 2 part 2. All different-speaker comparisons were by-definition between-session and made using the same scheme as for same-speaker-between-session comparisons. Background models were trained using between-session full-length recordings.

Weights for calibration and fusion were trained using scores obtained from the development set. Data used as nominal offender and suspect samples was constrained to the same amount of information as was used for testing, as outlined above (Pilot studies indicated that weights calculated from scores from comparisons using all of the data available in the original recordings resulted in poor calibration). In both same- and different-speaker comparisons, session 1 part 1 was compared with session 2 part 2. Scores obtained from both within-session and between-session condition tests were calibrated using the same set of weights.

Validity and reliability (accuracy and precision) were assessed on the results from the test set using procedures from [29, 28]. Validity was assessed using the log-likelihood ratio cost (C_{llr}, [22]). Reliability was assessed by calculating the 95% credible interval (95% CI) using the parametric method [29, 28].

Since the different-speaker test comparisons are identical in both conditions, we also present measures estimated using only same-speaker comparisons pairs, so as to more clearly illustrate the difference between the two conditions. Validity on same-speaker assessments was assessed by the first term of C_{ss} associated with same-speaker comparisons,

\[C_{ss}^{llr} = \frac{1}{N_{ss}} \sum_{i=1}^{N_{ss}} \log_{2} \left(1 + \frac{1}{LR_{ss}} \right), \]

which was calculated from same-speaker comparison pairs, e.g. session 1 part 1 versus session 2 part 1, and session 1 part 2 versus session 2 part 2. Reliability was assessed by calculating the 95% credible interval (95% CI) on same-speaker pairs rather than all comparison pairs, since the difference in within-session and between-session same-speaker comparisons
is otherwise obscured by the much higher number of different-speaker comparisons.

3. Results and discussion

Figure 1a shows the performance in terms of \(C_{llr} \) and the 95% credible interval estimated from both same- and different-speaker comparisons, and Figure 1b shows the \(C_{sslr} \) and the 95% credible interval estimated only from same-speaker comparisons, respectively.

Within-session testing always overestimated the performance of the systems compared to between-session testing. In all instances it clearly overestimated the degree of validity. In some cases the reliability of the systems is also estimated to be higher, particularly for the formant-trajectory system (Figure 1b).

Figures 2 and 3 show Tippett plots of the fused system on tests of between-session same-speaker comparisons and within-session same-speaker comparisons, respectively. The red curve showing likelihood ratios obtained from different-speaker comparisons is the same in both conditions. The blue curve representing the likelihood ratios obtained from same-speaker comparisons is further to the right for the within-session condition compared to the between-session condition, indicating generally higher likelihood ratios for same-speaker comparisons in
this condition.

4. Conclusion

The results presented in this study demonstrate a clear overesti-
mation of validity and reliability when testing on within-session
data rather than between-session data. The differences in per-
formance presented here are due to factors other than mismatch
in channel conditions and the amount of data available, as these
have been controlled and accounted for in data used by the sys-
tems. Since forensic samples are always non-contemporaneous,
within-session variability should be accounted for when test-
ing the validity and reliability of forensic-voice-comparison
systems.

5. References

[8] E. Enzinger, “Characterizing formant tracks in viennese diph-

[9] P. Rose, “The intrinsic forensic discriminatory power of diph-
thongs,” in Proceedings of the Eleventh Australasian Interna-

[26] S. Pigeon, P. Druyts, and P. Verlinde, “Applying Logistic Regres-

[27] N. Brümmer, L. Burget, J. Černocký, O. Glembek, F. Grézl, M. Karafiát, D. A. van Leeuwen, P. Matějka, P. Schwarz, and A. Strasheim, “Fusion of heterogeneous speaker recognition sys-

culation of logistic-regression calibration and fusion weights for forensic voice comparison,” in Proceedings of the 13th Australasian International Conference on Speech Science and Technol-