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ABSTRACT

In this paper we investigate the use of formant and anti-

formant measurements of nasal consonants for speaker verifi-

cation. The features are obtained using a pole-zero vocal tract

model estimate optimized by minimizing a logarithmic crite-

rion which is motivated by the perception of amplitude by the

human auditory system. A GMM-UBM approach is used for

performing speaker comparisons within the likelihood-ratio

framework. Results are compared with systems based on Mel

Frequency Cepstral Coefficients (MFCCs) as well as formant

center frequencies and bandwidths obtained using the Snack

Toolkit. The formant and anti-formant based system attains

comparable results to the MFCC system and outperforms the

formant-based approach while offering a more straightfor-

ward interpretation in terms of a physical speech production

model.

Index Terms— Speaker recognition, speech analysis,

pole-zero model, formants, anti-formants

1. INTRODUCTION

Automatic speaker verification systems, especially those

targeted at the forensic field, predominantly use the Gaus-

sian Mixture Model – Universal Background Model (GMM-

UBM) approach, combined with cepstral features such as Mel

Frequency Cepstral Coefficients (MFCC). While this combi-

nation of classifier and features provides good performance,

the lack of a straightforward interpretation of these features

with regard to a physical model of vocal tract properties of

a speaker leaves them as an unfavorable choice for certain

applications such as providing evidence to the court.

On the other hand, formant features as they are used in

acoustic-phonetic approaches to forensic speaker comparison

[1] can be related to the resonance cavities of the vocal tract.

Formant center frequencies and their bandwidths are suffi-

cient to determine the areas of an acoustic tube formed by

cascading M uniform cylindrical sections of equal length [2].

They have been successfully applied to the task of forensic

speaker comparison using the GMM-UBM approach [3].

Formants are usually measured by methods based on all-

pole models of the speech production filter which provide a

good characterization of some speech sound categories. Rep-

resentations of the vocal tract for unvoiced and nasal as well

as lateral sounds contain the anti-resonances (zeros) and reso-

nances (poles) of the vocal tract. Therefore, pole-zero models

offer an advantage. Here we present the estimation method

described in [4].

2. POLE-ZERO MODEL

Speech production is modeled by a linear, slowly time-

varying filter, the speech production filter (SPF), which mod-

els the combined effect of the vocal tract and the radiation of

the lips, as well as the glottal pulse shape in the case of voiced

sounds. It is assumed to be time-invariant during a short-time

period of approximately 20-40ms.

In the speech production model, the sampled speech sig-

nal y(t) is assumed to be generated by an excitation signal

u(t) filtered by the SPF gt(τ), i.e.

y(t) =
∑
τ∈Z

gt(τ)u(t− τ). (1)

The signal u(t) is assumed to be a train of impulses for voiced

sounds, or white noise in the case of unvoiced sounds.

The frequency response of the SPF is given by

G(z, θ) =
B(z, θ)

A(z, θ)
=

∑n
l=0 blz

−l∑m
l=0 alz

−l
, (2)

where n and m denote the orders of the numerator and de-

nominator, respectively. The set of parameters θ denoted as

θ = [b0, b1, · · · , bn, a1, · · · , am]T (3)

is tuned to fit a frequency response estimate Ĝ(ωk) of the

SPF at a discrete set of frequencies {ωk, k = 1, · · · ,K}. The

present work uses the method described in [5] which obtains

Ĝ(ωk) by interpolating spectral peaks found within neighbor-

hoods of the multiples of the pitch frequency.
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Motivated by the fact that the human auditory system is

perceiving amplitude of the frequency contents of a sound sig-

nal in a logarithmic scale [6], the coefficients are optimized by

minimizing the following logarithmic criterion:

θ = argmin
θ′

K∑
k=1

∣∣∣∣log |Ĝ(ωk)| − log

∣∣∣∣B(ejωk , θ′)
A(ejωk , θ′)

∣∣∣∣
∣∣∣∣
2

. (4)

The optimization problem (4) can be written as

θ = argmin
θ′

V (θ′), (5)

V (θ) =

K∑
k=1

[F (θ)]2k, (6)

where [F (θ)]k denotes the k-th component of the real-valued

vector F (θ), which is a function of the d-dimensional real-

valued vector θ. Then, (5)-(6) are equivalent to (4) if we de-

fine

[F (θ)]k = log

∣∣∣∣∣
Ĝ(ωk)

G(ejωk , θ)

∣∣∣∣∣ , for all k = 1, · · · ,K, (7)

Using Newton-like methods, (5)-(6) is solved using the fol-
lowing iterative procedure

θi+1 = θi − αiθ̃i, (8)

where θ̃i is the solution of

Hiθ̃i = gi, (9)

the scalar αi denotes the step size at iteration i, the d-

dimensional vector gi denotes the gradient of V (θ) at θi,
and the d × d matrix Hi denotes either the Hessian of V (θ)
at θi or an approximation of it.

Let J(θ) denote the Jacobian of F (θ), i.e.,

[J(θ)]k,l =
∂[F (θ)]k
∂[θ]l

. (10)

The gradient gi can be computed from the Jacobian informa-

tion by

gi = 2JT (θi)F (θi). (11)

We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) for-

mula [7], a iterative procedure that directly approximates

H−1
i :

H−1
i+1 = H−1

i +

(
1 +

qTi H
−1
i qi

sTi qi

)
sis

T
i

sTi qi

−siq
T
i H

−1
i +H−1

i qis
T
i

sTi qi
,

si = θi+1 − θi,

qi = gi+1 − gi.

The step-size parameter αi is obtained from a linear search

algorithm using a sub-iterative procedure (i.e., formed of sub-
iterations of the main iterations (8)-(9)) in which, starting

from the initial value αi = 1, the value of αi is halved at

each sub-iteration until

V (θi − αiθ̃i) < V (θi),

or a maximum number of iterations is reached.
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Fig. 1. Formant (x) and anti-formant (o) measurements over

the length of a /n/ consonant

The formant and anti-formant measurements are obtained

from the roots of the denominator and numerator polynomials

in the z-plane, sorted in ascending order. The signal is divided

into frames using a 40ms hanning window and 95% overlap.

An order of 11 is selected for both numerator and denomi-

nator, which was determined based on a subset of the data.

The set of coefficients is first initialized by a weighted linear

least-squares algorithm [8] and then optimized by the pro-

posed method. The procedure does not employ any tracking

algorithm, i.e. any consideration of the temporal inter-relation

of the estimated poles and zeros, and imposes no continuity

conditions on obtained values. Fig. 1 shows an example of

formant and anti-formant measurements of an /n/ sound.

3. SPEAKER VERIFICATION SYSTEM

The automatic speaker verification system used in this study

is based on the GMM-UBM approach [9] and extends previ-

ous work in [3, 10] where it was applied to formant center

frequencies and bandwidths. Feature vectors consist of the

first three formants and anti-formants, as determined by the

pole-zero model, yielding 6 features per frame. Speakers are

modeled by a Gaussian mixture model (GMM) denoted by

λ := (pi, μi,Σi)i=1,...,M , (12)

where pi, μi and Σi represent the mixture weights, means

and covariance matrices. The universal background model
(UBM) is created by training a GMM from pooled feature
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vectors of different speakers using a maximum likelihood cri-

terion, which is solved using the Expectation-Maximization

(EM) algorithm. Speaker models are derived from the UBM

using maximum a-posteriori (MAP) adaption. This was found

to provide better results than the original approach in [3, 10].

A number of 8 mixture components is used in accordance to

[10]. Full covariance matrices are used in order to be able to

properly model within-speaker variability. The likelihood of

a set of feature vectors X given a GMM λ is calculated by

P (X|λ) =
n∏

i=1

f(xi|λ). (13)

where f(xi|λ) is the Gaussian mixture density function for

the specified model λ. In each speaker comparison the like-

lihood ratio (LR) is computed for a set of test feature vectors

X and the models of a speaker and the UBM.

LR =
P (X|λspeaker)

P (X|λUBM )
(14)

This score usually does not represent a proper LR which re-

quires that same-speaker comparisons report high LR values

while different-speaker comparisons report low values, with

values close to one offering no support to any of the two

hypotheses. Therefore, an automatic calibration procedure

based on logistic regression is applied to the scores using the

methods provided by the FoCaL toolkit [11]. The parameters

are estimated in a cross validation setting, using the scores of

all speakers except those involved in the current trial.

4. EVALUATION

Performance comparisons are carried out using the proposed

method, a baseline GMM-UBM speaker verification system

using basic MFCC features which is described in Section

4.1 as well as an approach using formant center frequencies

and bandwidths which are extracted using the Snack Toolkit1

(subsequently denoted as Formants/BW). This approach is

akin to [3], but uses MAP adaption to obtain speaker models.

All three systems are applied to the same /n/ consonant

data which is described in Section 4.2. The configuration of

both systems and features are chosen as example for this data

in line with previous work on speaker verification [3, 10, 9].

Their optimization will be dealt with in future work.

The equal error rate (EER) and the log likelihood-ratio
cost (Cllr) metric [11] are used as performance measures. De-

tection error trade-off (DET) plots are used to show the trade-

off between type I and II errors when the decision threshold

is varied over the LR range. Tippett plots characterize the

cumulative proportion of LRs from target trials less than or

equal to the value indicated on the abscissa and of non-target

trials greater than or equal to the value on the abscissa.

1http://www.speech.kth.se/snack/

4.1. Baseline system description

A GMM-UBM system using Mel Frequency Cepstral Coef-

ficients (MFCCs) [9] is used as baseline to compare speaker

verification performance. Feature vectors of 13 MFCCs are

computed every 10ms using a 20ms hamming window. Af-

ter extraction, cepstral mean reduction (CMR) is applied to

the feature vectors. The system is based on Gaussian mixture

models with 1024 mixture components and diagonal covari-

ance matrices2. Models of individual speakers are obtained

through MAP adaption from the UBM. No further score nor-

malizations such as the T-norm are applied.

4.2. Data base

The evaluations in this study are based on nasal /n/ conso-

nants in recordings of 106 male adult German speakers which

were selected from the Pool2010 corpus [12]. To obtain a suf-

ficient number of items, an automatic phone-level alignment

[13] was performed on recordings of the German version of

the north wind and the sun read by the speakers in one studio

session. Subsequently, auditory validation of the segments

was performed to check for possible alignment errors.

30 speakers were used for UBM training. This number

was chosen based on the results in [10]. The data of the re-

maining 76 speakers was split into two equally-sized train and

test datasets of about 25 /n/ segments with a median duration

of 60ms, allowing for 76 target and 5700 non-target trials.

5. RESULTS AND DISCUSSION

Table 1 provides the EER and Cllr values of the different

systems. The proposed method provides discrimination per-

Features EER Cllr

proposed method 3.9% 0.1325

Formants/BW 5.3% 0.2226

MFCC 3.9% 0.1296

Table 1. EER and Cllr results

formance in terms of EER equal to the MFCC based system

and outperforms the formant features. In terms of Cllr, it

incurs a slightly higher cost than the baseline system and a

lower cost than the formant-based systems. In the DET plot

in Fig. 2 the proposed method displays similar characteristics

as the MFCC system except for thresholds minimizing the

false alarm rate. The Tippett plot which is of interest in the

context of forensics is shown in Fig. 3.

6. CONCLUSIONS

In this paper, a new set of features consisting of formant

and anti-formant measurements obtained from a logarithmic

based pole-zero model estimate of the speech production fil-

ter [4] is applied to the task of speaker verification. These

2A similar configuration was used in [9] for single-gender UBMs.
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Fig. 2. DET plot of the compared systems

features are advantageous due to their more straightforward

interpretation. The features were extracted in an unsupervised

procedure and subsequently used in a GMM-UBM speaker

comparison approach. In an evaluation based on nasal /n/

consonants, this set of features achieves performance values

comparable to a MFCC based approach and outperforms an

approach based on formant frequencies and bandwidths.

Further tests are needed to evaluate the method on non-

contemporaneous speech as well as its susceptibility to chan-

nel mismatch such as transmission over telephone using

speech codecs and differences in speaking style and duration,

which is especially important for forensic applications [14].

A further improvements of the proposed method could be

achieved by using perceptual frequency scale as it is applied

in Perceptual Linear Prediction (PLP) and by adding deriva-

tives of the features, as commonly performed on MFCCs in

speaker verification systems. Furthermore, the amount of

complementary information to MFCC/PLP features and the

order of improvement achievable through fusion techniques

needs to be investigated.
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