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Introduction

Context: Development of features for Forensic Voice Comparison

Requires good speaker discrimination under recording condition mismatch

Preference for more easily interpretable features

Nasal consonants are an important source of speaker-discriminating information.

Relatively fixed structure of vocal and nasal cavity
á potentially low within-speaker variability

Complicated structure of nasal cavity & asymmetries in paranasal cavities (sinuses)
á high between-speaker variability

Proposed Features: Parameters of branched-tube oral/nasal tract (VT) model of nasal
consonants
Aim of this study: Evaluation of speaker-verification performance in controlled mis-
matched conditions common in forensic casework.
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Roughly three cavities
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Oral vowel production

Nasal section closed off by velum

Nasals and nasalized vowels

Nasal section coupled
Oral section closed for nasal stops

Branched-tube vocal tract model
Three tubes representing the pharyngeal, nasal,
and oral cavity, having L, M , and N segments,
respectively [1, 2]. The three tubes are coupled at
the velar junction. Using continuity on flow and
pressure a rational transfer function
H(z) = A−1(z)B(z) can be defined with the
denominator polynomial of degree M+N+L given
as:
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The forward and backward flow components C±(z) in the oral cavity are combined to
give the numerator polynomial of degree N
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µ̃1, . . . , µ̃N−1 are the reflection coefficients for the oral part, µ1 . . . , µM−1 are the reflec-
tion coefficients for the nasal part and µM . . . , µM+L the reflection coefficients for the
pharyngeal cavity. Polynomials P , Q, R and S are functions of the polynomials C±(z)
and the ratio of oral and nasal cross-section areas at the velum:

σ =
ÃN−1

AM−1 + ÃN−1

.

Thus, the model is parameterized by µ = (µ̃1, . . . , µ̃N−1, µ1 . . . , µM+L, σ).

Variational Bayes estimation scheme

The model is directly estimated from the (pre-emphasized) log-envelope y:

yj = log H̄ (θ,ωj) + εj.

For the j-th frequency ωj the function H̄ evaluates the non-linear transformation from
a set of vocal tract parameters θ to the transfer function. A sigmoidal mapping from
the unrestricted θi to µi is also included to accomodate the restricton of the reflection
coeffcients to the open interval (−1, 1). These parameters θ form the VT features (VT-θ)
are used in the experiments.
The Bayesian model for the estimation scheme is given as

p (θ, τ,Π|y) ∝ p (y|θ, τ ) p (τ ) p (θ|Π) p (Π) ,

where τ is the estimation error precision (i.e., the inverse variance)

p (y|θ, τ ) = N
(
y; log H̄ (θ,ω), τ I

)
and Π is the precision matrix (governed by a Gamma-hyperprior) of the smoothness prior
for the vocal tract parameters

p (θ|Π) p(Π) = N (θ; 0,Π)
∏
i

Gam(Πi ; ai ,bi).

In variational Bayes (VB) the posterior is factorized into a product of distributions:

p (θ, τ,Π|y) = q(θ, τ,Π) = q(θ)q(τ )q(Π)

Two assumptions about the posterior density q(θ, τ,Π) are necessary. First, q(θ, τ,Π)
factors as q(θ)q(τ )q(Π). Second, as in the original scheme, q(θ) is assumed to be
normal. Integrals are calculated approximately using the unscented transform [3].

Speaker verification experiments and procedures

/n/ tokens of 103 male adult German speakers in the Pool2010 corpus [4]

Conditions: Normal and high vocal effort, high-quality and mobile-telephone channels

Automatic phone-level alignment of /n/ tokens [5], followed by auditory validation

Data was split in sets of 20/20/63 speakers for PLDA model training, development,
and evaluation sets, respectively.

13 Mel-frequency cepstral coefficients (MFCCs) were extracted from the same 30 ms
long portion of the tokens used for VT estimation and were used as baseline features for
comparison (Hanning window, no pre-emphasis, 26 triangular filters with 50% overlap).

PLDA modeling and Likelihood Ratio calculation

VT parameters (VT-θ) as well as MFCCs were modeled using probabilistic linear discrim-
inant analysis [6]. Feature vectors are assumed to be generated by a generative model:

xij = µ + Fhi + Gwij + εij.

xij denotes the jth observation (VT-θs or MFCCs) of speaker i , µ + Fhi describes the
between-speaker variability, and Gwij + εij the within-speaker variability. As in [6] we use
a Gaussian residual term εij with diagonal covariance Σ. The priors of the latent variables
hi and wij are assumed to be Gaussian.

Given mean vectors x̄1 and x̄2 obtained from observations of /n/ tokens in the training
(enrollment) and test portions of a verification trial, a score s is calculated as a likelihood
ratio with respect to two hypotheses, that both vectors share the same latent identity
variable (H1), or that they were generated from different latent identity variables (H2):

s =
p(x̄1, x̄2|H1)

p(x̄1|H2)p(x̄2|H2)
.

Logistic regression was used for calibration [7] and to fuse the scores from VT-θ and
MFCC based systems [8]. Its parameters were trained on scores obtained from tests on
the development set.

Results
Vocal tract prior settings:

Six different VT prior settings for the ai (10,
20, 50, 100, 100, 200) and bi (1, 1, 1, 2, 1,
2) were evaluated on the development set.
The expected value for precision is given as
a/b. Results suggest that higher values for
the precision lead to better speaker verifi-
cation performance.

ai/bi 10/1 20/1 50/1 100/2 100/1 200/2
EER (%) 2.90 3.26 3.62 4.00 2.78 1.52
Cllr 0.180 0.185 0.179 0.181 0.108 0.082

Normal vocal effort, high-quality recs.
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Normal vocal effort, mobile-telephone recs.
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Normal vocal effort, High vocal effort Normal vocal effort,
high-quality recordings high-quality recordings mobile-telephone channel

Matched Matched Mismatched Matched Mismatched
EER Cllr EER Cllr EER Cllr EER Cllr EER Cllr

VT-θ 0.7 0.055 3.30 0.317 15.00 0.574 2.70 0.155 18.30 1.265
MFCC 3.1 0.158 4.20 0.201 11.30 0.405 6.10 0.229 8.80 0.401
Fusion 0.7 0.036 1.50 0.133 9.80 0.333 1.90 0.102 8.40 0.686

Discussion and Conclusion

This study assesses the performance of physiologically motivated vocal tract model esti-
mates of alveolar nasal stop (/n/) tokens in speaker verification experiments.
The main conclusions are:

Performance increased with higher precision values in the Bayesian VT estimation.

Performance of VT-θ based systems compared favorably to that of MFCC based
systems under matched conditions, but not under mismatched recording conditions.

Fusion of both systems generally improved upon both individual systems, indicating
that they offer complementary information.

Possible causes for lack of robustness:

Differences in fundamental frequency induced by high vocal effort [4] may have a
profound effect on spectral envelope estimate, leading to different VT model estimates.

Adaptive Multi-Rate (AMR) codec used in GSM and UMTS mobile telephone
networks uses order 10 linear prediction to encode the spectral envelope, which may
affect the vocal tract estimation.
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