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Abstract
For nasal stops and nasalized vowels, one-tube models
offer only an inadequate representation. To model the
spectral components of nasal speech signals, a minimum
of two connected tubes is necessary. Typically, the es-
timation of branched-tube area functions is based on a
pole-zero model. The present paper introduces a varia-
tional Bayesian scheme under Gaussian assumptions to
estimate the tube areas directly from the log-spectrum
of the speech signal. Probabilistic priors are used to en-
force smoothness of the tubes. The method is tested on
recorded tokens of /m/ from several speakers using dif-
ferent prior variances. Results show that mild smooth-
ness assumptions yield the best results in terms of model
error and marginal likelihood. Furthermore, while yield-
ing comparable fits, the estimated reflection coefficients
from the Bayesian scheme show less intra-subject vari-
ability between tokens than an unregularized non-linear
solver.
Index Terms: vocal tract, estimation, nasal stops,
Bayesian statistics

1. Introduction
Computational models for speech production and analy-
sis have been of major research interest since the 1960s
[1, 2, 3]. The most common model for speech coding
is linear predictive coding (LPC, [2]). For LPC it is as-
sumed that the vocal tract (VT) acts as a linear filter and
that (non-nasalized) vowels can be modeled using an all-
pole filter. For a given speech signal, the coefficients of
the all-pole filter can be determined by applying the LPC
to a given signal. Using appropriate boundary conditions
at the glottis and the lips, the all-pole model can be di-
rectly related to a simple mechanical model where the
VT is represented by a single tube [3].

During the production of nasal stops (e.g. /m/ or /n/)
and nasalized vowels, however, the velum is lowered and
the additional resonances caused by the nasal tract influ-
ence the speech signal. The envelopes of nasal spectra
show additional sinks (zeros) and thus a pole-zero filter
is a more efficient description of nasal signals than an all-
pole filter. A number of algorithms has been proposed to
solve a non-linear system of equations for the numerator

and denominator polynomials (see e.g. [4]). Linking this
pole-zero representation to an acoustical model requires
the use of a branched-tube model where the nasal tract is
added as an additional segmented tube. Estimating such
an acoustical model may provide a link to the physiology
of the speakers’ VT. Unfortunately, the pole-zero repre-
sentation has more degrees of freedom than the branched-
tube model excluding the possibility of an exact mapping.
A few methods have been suggested to estimate the VT
area function based on a pole-zero model [5, 6].

In this study, the aim is to introduce an approach that
estimates the VT model directly from the log spectral en-
velope without estimating a pole-zero model explicitly.
A variational Bayesian scheme is applied that is based
on the Laplace approximation [7], modified by using the
unscented transform [8] for integration. This scheme uti-
lizes relatively mild assumptions about the VT shape in
order to constrain the solution of the non-linear system.

2. Methods
2.1. Two Tube Model

In their model for nasal stops, Lim and Lee [5] consider
an acoustic tube model consisting of three parts: (1) a
pharyngeal tract (L segments) between the glottis and
the velum (nasal-oral branching point), (2) a nasal tract
(M segments) open at the nostrils, and (3) a closed (non-
radiating) oral tract (N segments). Each tract is mod-
eled by a segmented tube. Using continuity conditions
between the segments and at the coupling of the three
branches a rational transfer function H(z) = B(z)/A(z)
can be derived. These polynomials are related to the area
function of the VT via the reflection coefficients (RCs)

µm =
Am+1 −Am
Am+1 +Am

, (1)

whereAm is the cross-sectional area of them-th segment
starting at the nostrils (or lips for the oral part). The nu-
merator polynomial B(z) is of degree N and dependent
on the oral RCs µ̃0, . . . , µ̃N−1. The denominator poly-
nomial A(z) of degree L + M + N is dependent on the
oral RCs, the pharyngeal RCs µM , . . . , µM+L, the nasal
RCs µ1, . . . , µM−1 and the relation between the cross-



sectional areas of oral and nasal coupling sections at the
velum ν = ÃN−1/(AM−1 + ÃN−1) [5].

However, in general, no exact mapping from theM+
L + 2N polynomial coefficients to the M + L + N + 1
tube model parameters exists. Hence, estimation of the
area function of a two tube model is not straight-forward.

Previous works suggested to determine first the pole-
zero transfer function and then make use of the fact that
the numerator polynomial B(z) can be mapped exactly
to the oral RCs µ̃i using a step down algorithm [2, 5, 6].
Nasal and pharyngeal parameters are then either esti-
mated using the polynomial coefficients of the denomi-
nator [5] or the residual signal [6]. Both methods assume
that the zeros are modeled accurately by whatever pole-
zero estimation method is used.

Here, we suggest a different approach that estimates
all coefficients simultaneously, thus avoiding the use of
a separate pole-zero estimation algorithm. This is highly
non-trivial due to the complex relation between RCs and
polynomial coefficients and the restrictions that apply
to the RCs which must lie between −1 and 1. Hence,
a Bayesian algorithm is used that includes probabilistic
prior assumptions on the VT, in this case on smooth-
ness. The estimation scheme introduced here is based
on a general variational Bayesian scheme under Gaussian
assumptions [7] and will be described below.

2.2. Estimation

The estimation scheme models the logarithm of the trans-
fer function H(z) based on the log of the spectral en-
velope G(ω) of the recorded signal [4]. The generative
model for the log-envelope can be written as

y = lnG (ω) = f (θ, ω) + ε (ω) . (2)

The function f (θ, ω) incorporates the non-linear trans-
formation from the RCs to the log transfer function as
well as a non-linear mapping from the i-th parameter θi
to the i-th RC µi using a sigmoidal function (specifically
the Gaussian error function) ensuring that the RCs are re-
stricted to the open interval (−1, 1). The nasal-oral cou-
pling parameter ν is restricted to the interval (0, 1). A
scaling factor for the transfer function is also added. This
parameter has to be positive, which is achieved by a log
transformation. Therefore, the parameter vector θ is of
dimension M +N + L+ 2.

The measurement error ε is assumed to be normally
distributed with N (0,Σ(λ)) with λ parameterizing the
error covariance. The details of this parameterization will
be given below. The normality assumption about the error
yields a Gaussian likelihood function

p (y|θ, λ,m) = N (y|f (θ) ,Σ) , (3)

where Σ (λ) is now written as Σ for simplicity and m
denotes the model assumptions, e.g. prior settings and VT

structure. The priors for θ and λ are also Gaussian, i.e.

p (θ) = N
(
θ|ηθ,Π−1

θ

)
and p (λ) = N

(
λ|ηλ,Π−1

λ

)
(4)

where m was dropped for simplicity. Πθ and Πλ are the
respective precision matrices.

2.3. Variational Bayes

As the relation between spectral envelope and the model
paramemters is non-linear even under normality assump-
tions no closed form solution exists and an approxima-
tion scheme has to be applied. In variational Bayes, the
posterior distribution is partitioned into multiple indepen-
dent sets of distributions. Here, the parameters are parti-
tioned into the VT parameters θ and the error model pa-
rameter(s) λ. Hence, the variational distribution is given
as q(θ, λ) = q(θ)q(λ) with q(θ) = N (θ|µθ,Σθ) and
q(λ) = N (λ|µλ,Σλ) due to the normality assumption.
The posterior distribution q(θ) (q(λ)) is derived by inte-
grating the log joint probability ln p(y, θ, λ) with respect
to q(λ) (q(θ)). Since both posteriors are assumed to be
normal, the distribution is derived by finding the max-
imum and the 2nd-order derivative (approximated based
on first order partial derivatives) and applying the Laplace
approximation. Contrary to the original scheme [7], the
integration is carried out applying the unscented trans-
form [8], using an approximation up to 5th order. The
parameter updates are carried out after each other un-
til both updates converge twice in a row. Finally, the
marginal likelihood p(y|m) is calculated, again using the
unscented transform. The algorithm was implemented in
R [9].

2.4. Vocal tract priors

Informative priors for the RCs would require probabilis-
tic information about the VT shape. As those quantities
are not well known in general, we use a very straightfor-
ward approach by requiring a certain smoothness of the
VT (a similar example is obtaining the area function us-
ing LPC when both glottal and lip losses are estimated
[10]). Using Gaussian priors centered around zero, solu-
tions with smaller RCs and hence smoother VTs are pre-
ferred. A smaller prior variance implies stronger regular-
ization. The prior for the nasal-oral coupling coefficient
ν is also centered around zero resulting in equal nasal and
oral coupling areas due to the non-linear mapping.

2.5. Noise priors and assumptions

The error covariance Σ has an impact on the posterior VT
parameter distribution and the marginal likelihood. As it
is unknown and in general varies across utterances and
speakers, the scheme described above models the inverse
of the error covariance matrix Σ−1 as a non-linear func-
tion of a set of parameters λi which are to be estimated.
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Figure 1: Nasal RCs using a prior variance of 0.1 (left)
and unconstrained estimation (right) for speaker 1.

Here, we chose the simplest parameterization possible,
resulting in a diagonal precision matrix Σ−1 = exp (λ)In
with In being the unit matrix of the dimension of the
number of samples n. The prior variance for λ was set
to 105 which essentially implies a flat prior.

2.6. Preemphasis

The effects of the glottal pulse were modeled with up to
three real poles [6]. A single pole estimation using the
Burg-algorithm was repeated up to three times unless the
pole was on the negative real axis. Then the procedure
was terminated earlier. The poles correct for the spectral
tilt caused by the glottal pulse and nostril radiation.

2.7. Evaluation

For the evaluation of the method, we used 6 utterances of
/m/ in 5 different vowel contexts. 3 untrained male speak-
ers repeated the pseudoword ’ramadama’ (remedeme,
rimidimi, romodomo, rumudumu) 3 times. It was em-
bedded within a German sentence to control for prosody.
Tokens were manually segmented and a central segment
of 40 ms duration was extracted for each token. 4 tokens
were discarded as they were shorter than 40 ms. Speech
samples were downsampled to a frequency of 8 kHz. A
Hanning window was applied and envelopes were ex-
tracted using a peak detection and interpolation [4]. VT
area functions were estimated using 4 different prior vari-
ances for the VT parameters (σ2 = 0.02, 0.05, 0.1, and 1
with a diagonal matrix

(
Π−1
θ

)
ij

= σ2δij). VT parame-
ters were set to L = 4,M = 6, andN = 5, thus resulting
in a total of 15 RCs plus ν and the scaling factor. We com-
pared the root mean square (RMS) and the log marginal
likelihood of the different prior settings for the speech
samples. In addition, we also used an unregularized stan-
dard Gauss-Newton (GN) scheme minimizing the sum of
squares of the error.
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Figure 2: Envelope (gray dots) for /eme/ by speaker 1
as well as the corresponding estimated spectra and
poles/zeros based on prior variances of 0.02 (black), 0.1
(green) and unregularized estimation (red).

3. Results

Table 1: Mean RMS of the errors in dB for different sub-
jects and prior settings.

Subject GN prior variance
0.02 0.05 0.1 1

1 2.28 2.60 2.39 2.29 2.28
2 2.88 3.33 2.96 2.85 2.97
3 3.68 4.52 3.83 3.71 3.66

All 2.914 3.436 3.026 2.911 2.941

Comparing the different prior settings, σ2 = 0.1
yielded the smallest overall error (Table 1) and also the
highest marginal likelihood (not shown here). The table
also shows that the unregularized GN yielded comparable
results for the modeling error. However, looking at the
distribution of the RCs, the Bayesian scheme shows much
less variation as illustrated in Fig. 1 for subject 1 regard-
ing the 6 nasal RCs. Interestingly, the Bayesian estima-
tion and GN do not necessarily converge to a comparable
solution. Still, spectral estimates are often very similar
(Fig. 2). The strongly constrained estimation (tight pri-
ors) does follow a pattern similar to the estimation with
the more loose priors. However, specific spectral features
are not captured, probably due to the higher regulariza-
tion. From Fig. 2 it is also clear that there is a number
of spectral dips that cannot be modeled due to the limited
number of oral coefficients and the fact that the paranasal
cavities (sinuses) are not included in the present model.
Fig. 3 shows the areas derived from the RC estimates for
subjects 1 and 2 with σ2 = 0.1. The area next to the
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Figure 3: Distributions of area functions of 2 speakers for pharyngeal (black),nasal (green) and oral (red, negative) cavities.

nostrils was normalized to a value of 1. The scaling of
the graph was chosen for better visibility. Thus, a few
outliers that mainly affect the estimates of the oral cavity
(2 of 30 utterances) and the pharyngeal cavity (3 of 30
utterances) could not be entirely displayed. The higher
variance of these two cavities might be caused by the dif-
ferent vowel contexts, as the variance within a context
appears to be smaller for many contexts. The nasal esti-
mates show less variance and vary more strongly towards
the velum which is to be expected.

4. Discussion
Branched-tube models are important for representing
nasal stops as well as nasalized vowels. Here, we in-
troduced a variational Bayesian approach based on the
Laplace approximation and the unscented transform in
order to estimate the VT area functions for a tube model
of nasal stops. The aim was to estimate all (oral, nasal,
and pharyngeal) RCs simultaneously and directly from
the signal to avoid the dependence on the algorithm for
pole-zero estimation. The algorithm fits the model to the
log spectral envelope using zero mean Gaussian priors for
the RCs, thereby preferring smooth VT shapes. The prior
variance defines the strength of this regularization.

Application to recorded speech data yields in general
good spectral fits. However, not all potential zeros can be
fitted due to the limited complexity of the model. Low
prior variances (strong regularization) result in poorer
fits. Although, the use of an unregularized scheme that
minimizes only the mean square error results in equally
good fits, the variance of the RCs estimates is consider-
ably larger across tokens. Concerning the selection of a
proper prior, the marginal likelihood would be an indica-
tor to identify the best model.

There are, however, still a number of open questions
and issues. It is clear, that the use of this simple branched
tube model is only partially adequate for modeling nasals,
since paranasal cavities are not included. As the addi-

tion of such side branches increases the number of pa-
rameters, adequate priors may turn out to be vital in the
estimation process. Other important issues concerning
the VT model are the use of frequency-dependent glottal
and nasal terminations as well as a realistic glottis model,
thus increasing physical plausibility. A further improve-
ment would be the use of priors deduced from anatomical
measurements, e.g. through imaging methods.

To conclude, the probabilistic Bayesian approach
shows promise for the estimation of area functions based
on complex models of the vocal tract.
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